![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccssre | Structured version Visualization version GIF version |
Description: A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.) |
Ref | Expression |
---|---|
iccssre | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc2 13472 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | |
2 | 1 | biimp3a 1469 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
3 | 2 | simp1d 1142 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
4 | 3 | 3expia 1121 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ)) |
5 | 4 | ssrdv 4014 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ⊆ wss 3976 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 ≤ cle 11325 [,]cicc 13410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-icc 13414 |
This theorem is referenced by: iccssred 13494 iccsupr 13502 iccsplit 13545 iccshftri 13547 iccshftli 13549 iccdili 13551 icccntri 13553 unitssre 13559 supicc 13561 supiccub 13562 supicclub 13563 icccld 24808 iccntr 24862 icccmplem2 24864 icccmplem3 24865 icccmp 24866 retopconn 24870 iccconn 24871 cnmpopc 24974 iihalf1cn 24978 iihalf1cnOLD 24979 iihalf2cn 24981 iihalf2cnOLD 24982 icoopnst 24988 iocopnst 24989 icchmeo 24990 icchmeoOLD 24991 xrhmeo 24996 icccvx 25000 cnheiborlem 25005 htpycc 25031 pcocn 25069 pcohtpylem 25071 pcopt 25074 pcopt2 25075 pcoass 25076 pcorevlem 25078 ivthlem2 25506 ivthlem3 25507 ivthicc 25512 evthicc 25513 ovolficcss 25523 ovolicc1 25570 ovolicc2 25576 ovolicc 25577 iccmbl 25620 ovolioo 25622 dyadss 25648 volcn 25660 volivth 25661 vitalilem2 25663 vitalilem4 25665 mbfimaicc 25685 mbfi1fseqlem4 25773 itgioo 25871 rollelem 26047 rolle 26048 cmvthOLD 26050 mvth 26051 dvlip 26052 c1liplem1 26055 c1lip1 26056 c1lip3 26058 dvgt0lem1 26061 dvgt0lem2 26062 dvgt0 26063 dvlt0 26064 dvge0 26065 dvle 26066 dvivthlem1 26067 dvivth 26069 dvne0 26070 lhop1lem 26072 dvcvx 26079 dvfsumleOLD 26081 dvfsumge 26082 dvfsumabs 26083 ftc1lem1 26096 ftc1a 26098 ftc1lem4 26100 ftc1lem5 26101 ftc1lem6 26102 ftc1 26103 ftc1cn 26104 ftc2 26105 ftc2ditglem 26106 ftc2ditg 26107 itgparts 26108 itgsubstlem 26109 itgpowd 26111 aalioulem3 26394 reeff1olem 26508 efcvx 26511 pilem3 26515 pige3ALT 26580 sinord 26594 recosf1o 26595 resinf1o 26596 efif1olem4 26605 asinrecl 26963 acosrecl 26964 emre 27067 pntlem3 27671 ttgcontlem1 28917 signsply0 34528 iblidicc 34569 ftc2re 34575 iccsconn 35216 iccllysconn 35218 cvmliftlem10 35262 ivthALT 36301 sin2h 37570 cos2h 37571 mblfinlem2 37618 ftc1cnnclem 37651 ftc1cnnc 37652 ftc1anclem7 37659 ftc1anc 37661 ftc2nc 37662 areacirclem2 37669 areacirclem3 37670 areacirclem4 37671 areacirc 37673 iccbnd 37800 icccmpALT 37801 arearect 43176 areaquad 43177 lhe4.4ex1a 44298 lefldiveq 45207 itgsin0pilem1 45871 ibliccsinexp 45872 iblioosinexp 45874 itgsinexplem1 45875 itgsinexp 45876 iblspltprt 45894 fourierdlem5 46033 fourierdlem9 46037 fourierdlem18 46046 fourierdlem24 46052 fourierdlem62 46089 fourierdlem66 46093 fourierdlem74 46101 fourierdlem75 46102 fourierdlem83 46110 fourierdlem87 46114 fourierdlem93 46120 fourierdlem95 46122 fourierdlem102 46129 fourierdlem103 46130 fourierdlem104 46131 fourierdlem112 46139 fourierdlem114 46141 sqwvfoura 46149 sqwvfourb 46150 |
Copyright terms: Public domain | W3C validator |