Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iccssre | Structured version Visualization version GIF version |
Description: A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.) |
Ref | Expression |
---|---|
iccssre | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc2 13073 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | |
2 | 1 | biimp3a 1467 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
3 | 2 | simp1d 1140 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
4 | 3 | 3expia 1119 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ)) |
5 | 4 | ssrdv 3923 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 ≤ cle 10941 [,]cicc 13011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-icc 13015 |
This theorem is referenced by: iccssred 13095 iccsupr 13103 iccsplit 13146 iccshftri 13148 iccshftli 13150 iccdili 13152 icccntri 13154 unitssre 13160 supicc 13162 supiccub 13163 supicclub 13164 icccld 23836 iccntr 23890 icccmplem2 23892 icccmplem3 23893 icccmp 23894 retopconn 23898 iccconn 23899 cnmpopc 23997 iihalf1cn 24001 iihalf2cn 24003 icoopnst 24008 iocopnst 24009 icchmeo 24010 xrhmeo 24015 icccvx 24019 cnheiborlem 24023 htpycc 24049 pcocn 24086 pcohtpylem 24088 pcopt 24091 pcopt2 24092 pcoass 24093 pcorevlem 24095 ivthlem2 24521 ivthlem3 24522 ivthicc 24527 evthicc 24528 ovolficcss 24538 ovolicc1 24585 ovolicc2 24591 ovolicc 24592 iccmbl 24635 ovolioo 24637 dyadss 24663 volcn 24675 volivth 24676 vitalilem2 24678 vitalilem4 24680 mbfimaicc 24700 mbfi1fseqlem4 24788 itgioo 24885 rollelem 25058 rolle 25059 cmvth 25060 mvth 25061 dvlip 25062 c1liplem1 25065 c1lip1 25066 c1lip3 25068 dvgt0lem1 25071 dvgt0lem2 25072 dvgt0 25073 dvlt0 25074 dvge0 25075 dvle 25076 dvivthlem1 25077 dvivth 25079 dvne0 25080 lhop1lem 25082 dvcvx 25089 dvfsumle 25090 dvfsumge 25091 dvfsumabs 25092 ftc1lem1 25104 ftc1a 25106 ftc1lem4 25108 ftc1lem5 25109 ftc1lem6 25110 ftc1 25111 ftc1cn 25112 ftc2 25113 ftc2ditglem 25114 ftc2ditg 25115 itgparts 25116 itgsubstlem 25117 itgpowd 25119 aalioulem3 25399 reeff1olem 25510 efcvx 25513 pilem3 25517 pige3ALT 25581 sinord 25595 recosf1o 25596 resinf1o 25597 efif1olem4 25606 asinrecl 25957 acosrecl 25958 emre 26060 pntlem3 26662 ttgcontlem1 27155 signsply0 32430 iblidicc 32472 ftc2re 32478 iccsconn 33110 iccllysconn 33112 cvmliftlem10 33156 ivthALT 34451 sin2h 35694 cos2h 35695 mblfinlem2 35742 ftc1cnnclem 35775 ftc1cnnc 35776 ftc1anclem7 35783 ftc1anc 35785 ftc2nc 35786 areacirclem2 35793 areacirclem3 35794 areacirclem4 35795 areacirc 35797 iccbnd 35925 icccmpALT 35926 arearect 40962 areaquad 40963 lhe4.4ex1a 41836 lefldiveq 42721 itgsin0pilem1 43381 ibliccsinexp 43382 iblioosinexp 43384 itgsinexplem1 43385 itgsinexp 43386 iblspltprt 43404 fourierdlem5 43543 fourierdlem9 43547 fourierdlem18 43556 fourierdlem24 43562 fourierdlem62 43599 fourierdlem66 43603 fourierdlem74 43611 fourierdlem75 43612 fourierdlem83 43620 fourierdlem87 43624 fourierdlem93 43630 fourierdlem95 43632 fourierdlem102 43639 fourierdlem103 43640 fourierdlem104 43641 fourierdlem112 43649 fourierdlem114 43651 sqwvfoura 43659 sqwvfourb 43660 |
Copyright terms: Public domain | W3C validator |