| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccssre | Structured version Visualization version GIF version | ||
| Description: A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.) |
| Ref | Expression |
|---|---|
| iccssre | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc2 13332 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | |
| 2 | 1 | biimp3a 1471 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
| 3 | 2 | simp1d 1142 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
| 4 | 3 | 3expia 1121 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ)) |
| 5 | 4 | ssrdv 3943 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ⊆ wss 3905 class class class wbr 5095 (class class class)co 7353 ℝcr 11027 ≤ cle 11169 [,]cicc 13269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-icc 13273 |
| This theorem is referenced by: iccssred 13355 iccsupr 13363 iccsplit 13406 iccshftri 13408 iccshftli 13410 iccdili 13412 icccntri 13414 unitssre 13420 supicc 13422 supiccub 13423 supicclub 13424 icccld 24670 iccntr 24726 icccmplem2 24728 icccmplem3 24729 icccmp 24730 retopconn 24734 iccconn 24735 cnmpopc 24838 iihalf1cn 24842 iihalf1cnOLD 24843 iihalf2cn 24845 iihalf2cnOLD 24846 icoopnst 24852 iocopnst 24853 icchmeo 24854 icchmeoOLD 24855 xrhmeo 24860 icccvx 24864 cnheiborlem 24869 htpycc 24895 pcocn 24933 pcohtpylem 24935 pcopt 24938 pcopt2 24939 pcoass 24940 pcorevlem 24942 ivthlem2 25369 ivthlem3 25370 ivthicc 25375 evthicc 25376 ovolficcss 25386 ovolicc1 25433 ovolicc2 25439 ovolicc 25440 iccmbl 25483 ovolioo 25485 dyadss 25511 volcn 25523 volivth 25524 vitalilem2 25526 vitalilem4 25528 mbfimaicc 25548 mbfi1fseqlem4 25635 itgioo 25733 rollelem 25909 rolle 25910 cmvthOLD 25912 mvth 25913 dvlip 25914 c1liplem1 25917 c1lip1 25918 c1lip3 25920 dvgt0lem1 25923 dvgt0lem2 25924 dvgt0 25925 dvlt0 25926 dvge0 25927 dvle 25928 dvivthlem1 25929 dvivth 25931 dvne0 25932 lhop1lem 25934 dvcvx 25941 dvfsumleOLD 25943 dvfsumge 25944 dvfsumabs 25945 ftc1lem1 25958 ftc1a 25960 ftc1lem4 25962 ftc1lem5 25963 ftc1lem6 25964 ftc1 25965 ftc1cn 25966 ftc2 25967 ftc2ditglem 25968 ftc2ditg 25969 itgparts 25970 itgsubstlem 25971 itgpowd 25973 aalioulem3 26258 reeff1olem 26372 efcvx 26375 pilem3 26379 pige3ALT 26445 sinord 26459 recosf1o 26460 resinf1o 26461 efif1olem4 26470 asinrecl 26828 acosrecl 26829 emre 26932 pntlem3 27536 ttgcontlem1 28848 signsply0 34518 iblidicc 34559 ftc2re 34565 iccsconn 35220 iccllysconn 35222 cvmliftlem10 35266 ivthALT 36308 sin2h 37589 cos2h 37590 mblfinlem2 37637 ftc1cnnclem 37670 ftc1cnnc 37671 ftc1anclem7 37678 ftc1anc 37680 ftc2nc 37681 areacirclem2 37688 areacirclem3 37689 areacirclem4 37690 areacirc 37692 iccbnd 37819 icccmpALT 37820 arearect 43188 areaquad 43189 lhe4.4ex1a 44302 lefldiveq 45274 itgsin0pilem1 45932 ibliccsinexp 45933 iblioosinexp 45935 itgsinexplem1 45936 itgsinexp 45937 iblspltprt 45955 fourierdlem5 46094 fourierdlem9 46098 fourierdlem18 46107 fourierdlem24 46113 fourierdlem62 46150 fourierdlem66 46154 fourierdlem74 46162 fourierdlem75 46163 fourierdlem83 46171 fourierdlem87 46175 fourierdlem93 46181 fourierdlem95 46183 fourierdlem102 46190 fourierdlem103 46191 fourierdlem104 46192 fourierdlem112 46200 fourierdlem114 46202 sqwvfoura 46210 sqwvfourb 46211 |
| Copyright terms: Public domain | W3C validator |