| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccssre | Structured version Visualization version GIF version | ||
| Description: A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.) |
| Ref | Expression |
|---|---|
| iccssre | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc2 13313 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | |
| 2 | 1 | biimp3a 1471 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
| 3 | 2 | simp1d 1142 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
| 4 | 3 | 3expia 1121 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ)) |
| 5 | 4 | ssrdv 3936 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 ⊆ wss 3898 class class class wbr 5093 (class class class)co 7352 ℝcr 11012 ≤ cle 11154 [,]cicc 13250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-icc 13254 |
| This theorem is referenced by: iccssred 13336 iccsupr 13344 iccsplit 13387 iccshftri 13389 iccshftli 13391 iccdili 13393 icccntri 13395 unitssre 13401 supicc 13403 supiccub 13404 supicclub 13405 icccld 24682 iccntr 24738 icccmplem2 24740 icccmplem3 24741 icccmp 24742 retopconn 24746 iccconn 24747 cnmpopc 24850 iihalf1cn 24854 iihalf1cnOLD 24855 iihalf2cn 24857 iihalf2cnOLD 24858 icoopnst 24864 iocopnst 24865 icchmeo 24866 icchmeoOLD 24867 xrhmeo 24872 icccvx 24876 cnheiborlem 24881 htpycc 24907 pcocn 24945 pcohtpylem 24947 pcopt 24950 pcopt2 24951 pcoass 24952 pcorevlem 24954 ivthlem2 25381 ivthlem3 25382 ivthicc 25387 evthicc 25388 ovolficcss 25398 ovolicc1 25445 ovolicc2 25451 ovolicc 25452 iccmbl 25495 ovolioo 25497 dyadss 25523 volcn 25535 volivth 25536 vitalilem2 25538 vitalilem4 25540 mbfimaicc 25560 mbfi1fseqlem4 25647 itgioo 25745 rollelem 25921 rolle 25922 cmvthOLD 25924 mvth 25925 dvlip 25926 c1liplem1 25929 c1lip1 25930 c1lip3 25932 dvgt0lem1 25935 dvgt0lem2 25936 dvgt0 25937 dvlt0 25938 dvge0 25939 dvle 25940 dvivthlem1 25941 dvivth 25943 dvne0 25944 lhop1lem 25946 dvcvx 25953 dvfsumleOLD 25955 dvfsumge 25956 dvfsumabs 25957 ftc1lem1 25970 ftc1a 25972 ftc1lem4 25974 ftc1lem5 25975 ftc1lem6 25976 ftc1 25977 ftc1cn 25978 ftc2 25979 ftc2ditglem 25980 ftc2ditg 25981 itgparts 25982 itgsubstlem 25983 itgpowd 25985 aalioulem3 26270 reeff1olem 26384 efcvx 26387 pilem3 26391 pige3ALT 26457 sinord 26471 recosf1o 26472 resinf1o 26473 efif1olem4 26482 asinrecl 26840 acosrecl 26841 emre 26944 pntlem3 27548 ttgcontlem1 28864 signsply0 34585 iblidicc 34626 ftc2re 34632 iccsconn 35313 iccllysconn 35315 cvmliftlem10 35359 ivthALT 36400 sin2h 37670 cos2h 37671 mblfinlem2 37718 ftc1cnnclem 37751 ftc1cnnc 37752 ftc1anclem7 37759 ftc1anc 37761 ftc2nc 37762 areacirclem2 37769 areacirclem3 37770 areacirclem4 37771 areacirc 37773 iccbnd 37900 icccmpALT 37901 arearect 43332 areaquad 43333 lhe4.4ex1a 44446 lefldiveq 45417 itgsin0pilem1 46072 ibliccsinexp 46073 iblioosinexp 46075 itgsinexplem1 46076 itgsinexp 46077 iblspltprt 46095 fourierdlem5 46234 fourierdlem9 46238 fourierdlem18 46247 fourierdlem24 46253 fourierdlem62 46290 fourierdlem66 46294 fourierdlem74 46302 fourierdlem75 46303 fourierdlem83 46311 fourierdlem87 46315 fourierdlem93 46321 fourierdlem95 46323 fourierdlem102 46330 fourierdlem103 46331 fourierdlem104 46332 fourierdlem112 46340 fourierdlem114 46342 sqwvfoura 46350 sqwvfourb 46351 |
| Copyright terms: Public domain | W3C validator |