| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccssre | Structured version Visualization version GIF version | ||
| Description: A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.) |
| Ref | Expression |
|---|---|
| iccssre | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc2 13308 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | |
| 2 | 1 | biimp3a 1471 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
| 3 | 2 | simp1d 1142 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
| 4 | 3 | 3expia 1121 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ)) |
| 5 | 4 | ssrdv 3940 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ⊆ wss 3902 class class class wbr 5091 (class class class)co 7346 ℝcr 11002 ≤ cle 11144 [,]cicc 13245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-pre-lttri 11077 ax-pre-lttrn 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-icc 13249 |
| This theorem is referenced by: iccssred 13331 iccsupr 13339 iccsplit 13382 iccshftri 13384 iccshftli 13386 iccdili 13388 icccntri 13390 unitssre 13396 supicc 13398 supiccub 13399 supicclub 13400 icccld 24679 iccntr 24735 icccmplem2 24737 icccmplem3 24738 icccmp 24739 retopconn 24743 iccconn 24744 cnmpopc 24847 iihalf1cn 24851 iihalf1cnOLD 24852 iihalf2cn 24854 iihalf2cnOLD 24855 icoopnst 24861 iocopnst 24862 icchmeo 24863 icchmeoOLD 24864 xrhmeo 24869 icccvx 24873 cnheiborlem 24878 htpycc 24904 pcocn 24942 pcohtpylem 24944 pcopt 24947 pcopt2 24948 pcoass 24949 pcorevlem 24951 ivthlem2 25378 ivthlem3 25379 ivthicc 25384 evthicc 25385 ovolficcss 25395 ovolicc1 25442 ovolicc2 25448 ovolicc 25449 iccmbl 25492 ovolioo 25494 dyadss 25520 volcn 25532 volivth 25533 vitalilem2 25535 vitalilem4 25537 mbfimaicc 25557 mbfi1fseqlem4 25644 itgioo 25742 rollelem 25918 rolle 25919 cmvthOLD 25921 mvth 25922 dvlip 25923 c1liplem1 25926 c1lip1 25927 c1lip3 25929 dvgt0lem1 25932 dvgt0lem2 25933 dvgt0 25934 dvlt0 25935 dvge0 25936 dvle 25937 dvivthlem1 25938 dvivth 25940 dvne0 25941 lhop1lem 25943 dvcvx 25950 dvfsumleOLD 25952 dvfsumge 25953 dvfsumabs 25954 ftc1lem1 25967 ftc1a 25969 ftc1lem4 25971 ftc1lem5 25972 ftc1lem6 25973 ftc1 25974 ftc1cn 25975 ftc2 25976 ftc2ditglem 25977 ftc2ditg 25978 itgparts 25979 itgsubstlem 25980 itgpowd 25982 aalioulem3 26267 reeff1olem 26381 efcvx 26384 pilem3 26388 pige3ALT 26454 sinord 26468 recosf1o 26469 resinf1o 26470 efif1olem4 26479 asinrecl 26837 acosrecl 26838 emre 26941 pntlem3 27545 ttgcontlem1 28861 signsply0 34559 iblidicc 34600 ftc2re 34606 iccsconn 35280 iccllysconn 35282 cvmliftlem10 35326 ivthALT 36368 sin2h 37649 cos2h 37650 mblfinlem2 37697 ftc1cnnclem 37730 ftc1cnnc 37731 ftc1anclem7 37738 ftc1anc 37740 ftc2nc 37741 areacirclem2 37748 areacirclem3 37749 areacirclem4 37750 areacirc 37752 iccbnd 37879 icccmpALT 37880 arearect 43247 areaquad 43248 lhe4.4ex1a 44361 lefldiveq 45332 itgsin0pilem1 45987 ibliccsinexp 45988 iblioosinexp 45990 itgsinexplem1 45991 itgsinexp 45992 iblspltprt 46010 fourierdlem5 46149 fourierdlem9 46153 fourierdlem18 46162 fourierdlem24 46168 fourierdlem62 46205 fourierdlem66 46209 fourierdlem74 46217 fourierdlem75 46218 fourierdlem83 46226 fourierdlem87 46230 fourierdlem93 46236 fourierdlem95 46238 fourierdlem102 46245 fourierdlem103 46246 fourierdlem104 46247 fourierdlem112 46255 fourierdlem114 46257 sqwvfoura 46265 sqwvfourb 46266 |
| Copyright terms: Public domain | W3C validator |