![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccssre | Structured version Visualization version GIF version |
Description: A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.) |
Ref | Expression |
---|---|
iccssre | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc2 13448 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | |
2 | 1 | biimp3a 1468 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
3 | 2 | simp1d 1141 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
4 | 3 | 3expia 1120 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ)) |
5 | 4 | ssrdv 4000 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 ⊆ wss 3962 class class class wbr 5147 (class class class)co 7430 ℝcr 11151 ≤ cle 11293 [,]cicc 13386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-pre-lttri 11226 ax-pre-lttrn 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-icc 13390 |
This theorem is referenced by: iccssred 13470 iccsupr 13478 iccsplit 13521 iccshftri 13523 iccshftli 13525 iccdili 13527 icccntri 13529 unitssre 13535 supicc 13537 supiccub 13538 supicclub 13539 icccld 24802 iccntr 24856 icccmplem2 24858 icccmplem3 24859 icccmp 24860 retopconn 24864 iccconn 24865 cnmpopc 24968 iihalf1cn 24972 iihalf1cnOLD 24973 iihalf2cn 24975 iihalf2cnOLD 24976 icoopnst 24982 iocopnst 24983 icchmeo 24984 icchmeoOLD 24985 xrhmeo 24990 icccvx 24994 cnheiborlem 24999 htpycc 25025 pcocn 25063 pcohtpylem 25065 pcopt 25068 pcopt2 25069 pcoass 25070 pcorevlem 25072 ivthlem2 25500 ivthlem3 25501 ivthicc 25506 evthicc 25507 ovolficcss 25517 ovolicc1 25564 ovolicc2 25570 ovolicc 25571 iccmbl 25614 ovolioo 25616 dyadss 25642 volcn 25654 volivth 25655 vitalilem2 25657 vitalilem4 25659 mbfimaicc 25679 mbfi1fseqlem4 25767 itgioo 25865 rollelem 26041 rolle 26042 cmvthOLD 26044 mvth 26045 dvlip 26046 c1liplem1 26049 c1lip1 26050 c1lip3 26052 dvgt0lem1 26055 dvgt0lem2 26056 dvgt0 26057 dvlt0 26058 dvge0 26059 dvle 26060 dvivthlem1 26061 dvivth 26063 dvne0 26064 lhop1lem 26066 dvcvx 26073 dvfsumleOLD 26075 dvfsumge 26076 dvfsumabs 26077 ftc1lem1 26090 ftc1a 26092 ftc1lem4 26094 ftc1lem5 26095 ftc1lem6 26096 ftc1 26097 ftc1cn 26098 ftc2 26099 ftc2ditglem 26100 ftc2ditg 26101 itgparts 26102 itgsubstlem 26103 itgpowd 26105 aalioulem3 26390 reeff1olem 26504 efcvx 26507 pilem3 26511 pige3ALT 26576 sinord 26590 recosf1o 26591 resinf1o 26592 efif1olem4 26601 asinrecl 26959 acosrecl 26960 emre 27063 pntlem3 27667 ttgcontlem1 28913 signsply0 34544 iblidicc 34585 ftc2re 34591 iccsconn 35232 iccllysconn 35234 cvmliftlem10 35278 ivthALT 36317 sin2h 37596 cos2h 37597 mblfinlem2 37644 ftc1cnnclem 37677 ftc1cnnc 37678 ftc1anclem7 37685 ftc1anc 37687 ftc2nc 37688 areacirclem2 37695 areacirclem3 37696 areacirclem4 37697 areacirc 37699 iccbnd 37826 icccmpALT 37827 arearect 43203 areaquad 43204 lhe4.4ex1a 44324 lefldiveq 45242 itgsin0pilem1 45905 ibliccsinexp 45906 iblioosinexp 45908 itgsinexplem1 45909 itgsinexp 45910 iblspltprt 45928 fourierdlem5 46067 fourierdlem9 46071 fourierdlem18 46080 fourierdlem24 46086 fourierdlem62 46123 fourierdlem66 46127 fourierdlem74 46135 fourierdlem75 46136 fourierdlem83 46144 fourierdlem87 46148 fourierdlem93 46154 fourierdlem95 46156 fourierdlem102 46163 fourierdlem103 46164 fourierdlem104 46165 fourierdlem112 46173 fourierdlem114 46175 sqwvfoura 46183 sqwvfourb 46184 |
Copyright terms: Public domain | W3C validator |