| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccssre | Structured version Visualization version GIF version | ||
| Description: A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.) |
| Ref | Expression |
|---|---|
| iccssre | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc2 13452 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | |
| 2 | 1 | biimp3a 1471 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
| 3 | 2 | simp1d 1143 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
| 4 | 3 | 3expia 1122 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ)) |
| 5 | 4 | ssrdv 3989 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ⊆ wss 3951 class class class wbr 5143 (class class class)co 7431 ℝcr 11154 ≤ cle 11296 [,]cicc 13390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-pre-lttri 11229 ax-pre-lttrn 11230 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-icc 13394 |
| This theorem is referenced by: iccssred 13474 iccsupr 13482 iccsplit 13525 iccshftri 13527 iccshftli 13529 iccdili 13531 icccntri 13533 unitssre 13539 supicc 13541 supiccub 13542 supicclub 13543 icccld 24787 iccntr 24843 icccmplem2 24845 icccmplem3 24846 icccmp 24847 retopconn 24851 iccconn 24852 cnmpopc 24955 iihalf1cn 24959 iihalf1cnOLD 24960 iihalf2cn 24962 iihalf2cnOLD 24963 icoopnst 24969 iocopnst 24970 icchmeo 24971 icchmeoOLD 24972 xrhmeo 24977 icccvx 24981 cnheiborlem 24986 htpycc 25012 pcocn 25050 pcohtpylem 25052 pcopt 25055 pcopt2 25056 pcoass 25057 pcorevlem 25059 ivthlem2 25487 ivthlem3 25488 ivthicc 25493 evthicc 25494 ovolficcss 25504 ovolicc1 25551 ovolicc2 25557 ovolicc 25558 iccmbl 25601 ovolioo 25603 dyadss 25629 volcn 25641 volivth 25642 vitalilem2 25644 vitalilem4 25646 mbfimaicc 25666 mbfi1fseqlem4 25753 itgioo 25851 rollelem 26027 rolle 26028 cmvthOLD 26030 mvth 26031 dvlip 26032 c1liplem1 26035 c1lip1 26036 c1lip3 26038 dvgt0lem1 26041 dvgt0lem2 26042 dvgt0 26043 dvlt0 26044 dvge0 26045 dvle 26046 dvivthlem1 26047 dvivth 26049 dvne0 26050 lhop1lem 26052 dvcvx 26059 dvfsumleOLD 26061 dvfsumge 26062 dvfsumabs 26063 ftc1lem1 26076 ftc1a 26078 ftc1lem4 26080 ftc1lem5 26081 ftc1lem6 26082 ftc1 26083 ftc1cn 26084 ftc2 26085 ftc2ditglem 26086 ftc2ditg 26087 itgparts 26088 itgsubstlem 26089 itgpowd 26091 aalioulem3 26376 reeff1olem 26490 efcvx 26493 pilem3 26497 pige3ALT 26562 sinord 26576 recosf1o 26577 resinf1o 26578 efif1olem4 26587 asinrecl 26945 acosrecl 26946 emre 27049 pntlem3 27653 ttgcontlem1 28899 signsply0 34566 iblidicc 34607 ftc2re 34613 iccsconn 35253 iccllysconn 35255 cvmliftlem10 35299 ivthALT 36336 sin2h 37617 cos2h 37618 mblfinlem2 37665 ftc1cnnclem 37698 ftc1cnnc 37699 ftc1anclem7 37706 ftc1anc 37708 ftc2nc 37709 areacirclem2 37716 areacirclem3 37717 areacirclem4 37718 areacirc 37720 iccbnd 37847 icccmpALT 37848 arearect 43227 areaquad 43228 lhe4.4ex1a 44348 lefldiveq 45304 itgsin0pilem1 45965 ibliccsinexp 45966 iblioosinexp 45968 itgsinexplem1 45969 itgsinexp 45970 iblspltprt 45988 fourierdlem5 46127 fourierdlem9 46131 fourierdlem18 46140 fourierdlem24 46146 fourierdlem62 46183 fourierdlem66 46187 fourierdlem74 46195 fourierdlem75 46196 fourierdlem83 46204 fourierdlem87 46208 fourierdlem93 46214 fourierdlem95 46216 fourierdlem102 46223 fourierdlem103 46224 fourierdlem104 46225 fourierdlem112 46233 fourierdlem114 46235 sqwvfoura 46243 sqwvfourb 46244 |
| Copyright terms: Public domain | W3C validator |