| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccssre | Structured version Visualization version GIF version | ||
| Description: A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.) |
| Ref | Expression |
|---|---|
| iccssre | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc2 13434 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | |
| 2 | 1 | biimp3a 1470 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
| 3 | 2 | simp1d 1142 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
| 4 | 3 | 3expia 1121 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ)) |
| 5 | 4 | ssrdv 3969 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 ⊆ wss 3931 class class class wbr 5123 (class class class)co 7413 ℝcr 11136 ≤ cle 11278 [,]cicc 13372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-pre-lttri 11211 ax-pre-lttrn 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-icc 13376 |
| This theorem is referenced by: iccssred 13456 iccsupr 13464 iccsplit 13507 iccshftri 13509 iccshftli 13511 iccdili 13513 icccntri 13515 unitssre 13521 supicc 13523 supiccub 13524 supicclub 13525 icccld 24724 iccntr 24780 icccmplem2 24782 icccmplem3 24783 icccmp 24784 retopconn 24788 iccconn 24789 cnmpopc 24892 iihalf1cn 24896 iihalf1cnOLD 24897 iihalf2cn 24899 iihalf2cnOLD 24900 icoopnst 24906 iocopnst 24907 icchmeo 24908 icchmeoOLD 24909 xrhmeo 24914 icccvx 24918 cnheiborlem 24923 htpycc 24949 pcocn 24987 pcohtpylem 24989 pcopt 24992 pcopt2 24993 pcoass 24994 pcorevlem 24996 ivthlem2 25424 ivthlem3 25425 ivthicc 25430 evthicc 25431 ovolficcss 25441 ovolicc1 25488 ovolicc2 25494 ovolicc 25495 iccmbl 25538 ovolioo 25540 dyadss 25566 volcn 25578 volivth 25579 vitalilem2 25581 vitalilem4 25583 mbfimaicc 25603 mbfi1fseqlem4 25690 itgioo 25788 rollelem 25964 rolle 25965 cmvthOLD 25967 mvth 25968 dvlip 25969 c1liplem1 25972 c1lip1 25973 c1lip3 25975 dvgt0lem1 25978 dvgt0lem2 25979 dvgt0 25980 dvlt0 25981 dvge0 25982 dvle 25983 dvivthlem1 25984 dvivth 25986 dvne0 25987 lhop1lem 25989 dvcvx 25996 dvfsumleOLD 25998 dvfsumge 25999 dvfsumabs 26000 ftc1lem1 26013 ftc1a 26015 ftc1lem4 26017 ftc1lem5 26018 ftc1lem6 26019 ftc1 26020 ftc1cn 26021 ftc2 26022 ftc2ditglem 26023 ftc2ditg 26024 itgparts 26025 itgsubstlem 26026 itgpowd 26028 aalioulem3 26313 reeff1olem 26427 efcvx 26430 pilem3 26434 pige3ALT 26499 sinord 26513 recosf1o 26514 resinf1o 26515 efif1olem4 26524 asinrecl 26882 acosrecl 26883 emre 26986 pntlem3 27590 ttgcontlem1 28831 signsply0 34541 iblidicc 34582 ftc2re 34588 iccsconn 35228 iccllysconn 35230 cvmliftlem10 35274 ivthALT 36311 sin2h 37592 cos2h 37593 mblfinlem2 37640 ftc1cnnclem 37673 ftc1cnnc 37674 ftc1anclem7 37681 ftc1anc 37683 ftc2nc 37684 areacirclem2 37691 areacirclem3 37692 areacirclem4 37693 areacirc 37695 iccbnd 37822 icccmpALT 37823 arearect 43205 areaquad 43206 lhe4.4ex1a 44320 lefldiveq 45276 itgsin0pilem1 45937 ibliccsinexp 45938 iblioosinexp 45940 itgsinexplem1 45941 itgsinexp 45942 iblspltprt 45960 fourierdlem5 46099 fourierdlem9 46103 fourierdlem18 46112 fourierdlem24 46118 fourierdlem62 46155 fourierdlem66 46159 fourierdlem74 46167 fourierdlem75 46168 fourierdlem83 46176 fourierdlem87 46180 fourierdlem93 46186 fourierdlem95 46188 fourierdlem102 46195 fourierdlem103 46196 fourierdlem104 46197 fourierdlem112 46205 fourierdlem114 46207 sqwvfoura 46215 sqwvfourb 46216 |
| Copyright terms: Public domain | W3C validator |