| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccssre | Structured version Visualization version GIF version | ||
| Description: A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.) |
| Ref | Expression |
|---|---|
| iccssre | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc2 13379 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | |
| 2 | 1 | biimp3a 1471 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
| 3 | 2 | simp1d 1142 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
| 4 | 3 | 3expia 1121 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ)) |
| 5 | 4 | ssrdv 3955 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ⊆ wss 3917 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 ≤ cle 11216 [,]cicc 13316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-icc 13320 |
| This theorem is referenced by: iccssred 13402 iccsupr 13410 iccsplit 13453 iccshftri 13455 iccshftli 13457 iccdili 13459 icccntri 13461 unitssre 13467 supicc 13469 supiccub 13470 supicclub 13471 icccld 24661 iccntr 24717 icccmplem2 24719 icccmplem3 24720 icccmp 24721 retopconn 24725 iccconn 24726 cnmpopc 24829 iihalf1cn 24833 iihalf1cnOLD 24834 iihalf2cn 24836 iihalf2cnOLD 24837 icoopnst 24843 iocopnst 24844 icchmeo 24845 icchmeoOLD 24846 xrhmeo 24851 icccvx 24855 cnheiborlem 24860 htpycc 24886 pcocn 24924 pcohtpylem 24926 pcopt 24929 pcopt2 24930 pcoass 24931 pcorevlem 24933 ivthlem2 25360 ivthlem3 25361 ivthicc 25366 evthicc 25367 ovolficcss 25377 ovolicc1 25424 ovolicc2 25430 ovolicc 25431 iccmbl 25474 ovolioo 25476 dyadss 25502 volcn 25514 volivth 25515 vitalilem2 25517 vitalilem4 25519 mbfimaicc 25539 mbfi1fseqlem4 25626 itgioo 25724 rollelem 25900 rolle 25901 cmvthOLD 25903 mvth 25904 dvlip 25905 c1liplem1 25908 c1lip1 25909 c1lip3 25911 dvgt0lem1 25914 dvgt0lem2 25915 dvgt0 25916 dvlt0 25917 dvge0 25918 dvle 25919 dvivthlem1 25920 dvivth 25922 dvne0 25923 lhop1lem 25925 dvcvx 25932 dvfsumleOLD 25934 dvfsumge 25935 dvfsumabs 25936 ftc1lem1 25949 ftc1a 25951 ftc1lem4 25953 ftc1lem5 25954 ftc1lem6 25955 ftc1 25956 ftc1cn 25957 ftc2 25958 ftc2ditglem 25959 ftc2ditg 25960 itgparts 25961 itgsubstlem 25962 itgpowd 25964 aalioulem3 26249 reeff1olem 26363 efcvx 26366 pilem3 26370 pige3ALT 26436 sinord 26450 recosf1o 26451 resinf1o 26452 efif1olem4 26461 asinrecl 26819 acosrecl 26820 emre 26923 pntlem3 27527 ttgcontlem1 28819 signsply0 34549 iblidicc 34590 ftc2re 34596 iccsconn 35242 iccllysconn 35244 cvmliftlem10 35288 ivthALT 36330 sin2h 37611 cos2h 37612 mblfinlem2 37659 ftc1cnnclem 37692 ftc1cnnc 37693 ftc1anclem7 37700 ftc1anc 37702 ftc2nc 37703 areacirclem2 37710 areacirclem3 37711 areacirclem4 37712 areacirc 37714 iccbnd 37841 icccmpALT 37842 arearect 43211 areaquad 43212 lhe4.4ex1a 44325 lefldiveq 45297 itgsin0pilem1 45955 ibliccsinexp 45956 iblioosinexp 45958 itgsinexplem1 45959 itgsinexp 45960 iblspltprt 45978 fourierdlem5 46117 fourierdlem9 46121 fourierdlem18 46130 fourierdlem24 46136 fourierdlem62 46173 fourierdlem66 46177 fourierdlem74 46185 fourierdlem75 46186 fourierdlem83 46194 fourierdlem87 46198 fourierdlem93 46204 fourierdlem95 46206 fourierdlem102 46213 fourierdlem103 46214 fourierdlem104 46215 fourierdlem112 46223 fourierdlem114 46225 sqwvfoura 46233 sqwvfourb 46234 |
| Copyright terms: Public domain | W3C validator |