| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccssre | Structured version Visualization version GIF version | ||
| Description: A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.) |
| Ref | Expression |
|---|---|
| iccssre | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc2 13426 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | |
| 2 | 1 | biimp3a 1471 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
| 3 | 2 | simp1d 1142 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
| 4 | 3 | 3expia 1121 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ)) |
| 5 | 4 | ssrdv 3964 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2108 ⊆ wss 3926 class class class wbr 5119 (class class class)co 7403 ℝcr 11126 ≤ cle 11268 [,]cicc 13363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-pre-lttri 11201 ax-pre-lttrn 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-icc 13367 |
| This theorem is referenced by: iccssred 13449 iccsupr 13457 iccsplit 13500 iccshftri 13502 iccshftli 13504 iccdili 13506 icccntri 13508 unitssre 13514 supicc 13516 supiccub 13517 supicclub 13518 icccld 24703 iccntr 24759 icccmplem2 24761 icccmplem3 24762 icccmp 24763 retopconn 24767 iccconn 24768 cnmpopc 24871 iihalf1cn 24875 iihalf1cnOLD 24876 iihalf2cn 24878 iihalf2cnOLD 24879 icoopnst 24885 iocopnst 24886 icchmeo 24887 icchmeoOLD 24888 xrhmeo 24893 icccvx 24897 cnheiborlem 24902 htpycc 24928 pcocn 24966 pcohtpylem 24968 pcopt 24971 pcopt2 24972 pcoass 24973 pcorevlem 24975 ivthlem2 25403 ivthlem3 25404 ivthicc 25409 evthicc 25410 ovolficcss 25420 ovolicc1 25467 ovolicc2 25473 ovolicc 25474 iccmbl 25517 ovolioo 25519 dyadss 25545 volcn 25557 volivth 25558 vitalilem2 25560 vitalilem4 25562 mbfimaicc 25582 mbfi1fseqlem4 25669 itgioo 25767 rollelem 25943 rolle 25944 cmvthOLD 25946 mvth 25947 dvlip 25948 c1liplem1 25951 c1lip1 25952 c1lip3 25954 dvgt0lem1 25957 dvgt0lem2 25958 dvgt0 25959 dvlt0 25960 dvge0 25961 dvle 25962 dvivthlem1 25963 dvivth 25965 dvne0 25966 lhop1lem 25968 dvcvx 25975 dvfsumleOLD 25977 dvfsumge 25978 dvfsumabs 25979 ftc1lem1 25992 ftc1a 25994 ftc1lem4 25996 ftc1lem5 25997 ftc1lem6 25998 ftc1 25999 ftc1cn 26000 ftc2 26001 ftc2ditglem 26002 ftc2ditg 26003 itgparts 26004 itgsubstlem 26005 itgpowd 26007 aalioulem3 26292 reeff1olem 26406 efcvx 26409 pilem3 26413 pige3ALT 26479 sinord 26493 recosf1o 26494 resinf1o 26495 efif1olem4 26504 asinrecl 26862 acosrecl 26863 emre 26966 pntlem3 27570 ttgcontlem1 28810 signsply0 34529 iblidicc 34570 ftc2re 34576 iccsconn 35216 iccllysconn 35218 cvmliftlem10 35262 ivthALT 36299 sin2h 37580 cos2h 37581 mblfinlem2 37628 ftc1cnnclem 37661 ftc1cnnc 37662 ftc1anclem7 37669 ftc1anc 37671 ftc2nc 37672 areacirclem2 37679 areacirclem3 37680 areacirclem4 37681 areacirc 37683 iccbnd 37810 icccmpALT 37811 arearect 43186 areaquad 43187 lhe4.4ex1a 44301 lefldiveq 45269 itgsin0pilem1 45927 ibliccsinexp 45928 iblioosinexp 45930 itgsinexplem1 45931 itgsinexp 45932 iblspltprt 45950 fourierdlem5 46089 fourierdlem9 46093 fourierdlem18 46102 fourierdlem24 46108 fourierdlem62 46145 fourierdlem66 46149 fourierdlem74 46157 fourierdlem75 46158 fourierdlem83 46166 fourierdlem87 46170 fourierdlem93 46176 fourierdlem95 46178 fourierdlem102 46185 fourierdlem103 46186 fourierdlem104 46187 fourierdlem112 46195 fourierdlem114 46197 sqwvfoura 46205 sqwvfourb 46206 |
| Copyright terms: Public domain | W3C validator |