![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccssre | Structured version Visualization version GIF version |
Description: A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.) |
Ref | Expression |
---|---|
iccssre | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc2 13393 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | |
2 | 1 | biimp3a 1467 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
3 | 2 | simp1d 1140 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
4 | 3 | 3expia 1119 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ)) |
5 | 4 | ssrdv 3987 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 ∈ wcel 2104 ⊆ wss 3947 class class class wbr 5147 (class class class)co 7411 ℝcr 11111 ≤ cle 11253 [,]cicc 13331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-icc 13335 |
This theorem is referenced by: iccssred 13415 iccsupr 13423 iccsplit 13466 iccshftri 13468 iccshftli 13470 iccdili 13472 icccntri 13474 unitssre 13480 supicc 13482 supiccub 13483 supicclub 13484 icccld 24503 iccntr 24557 icccmplem2 24559 icccmplem3 24560 icccmp 24561 retopconn 24565 iccconn 24566 cnmpopc 24669 iihalf1cn 24673 iihalf1cnOLD 24674 iihalf2cn 24676 iihalf2cnOLD 24677 icoopnst 24683 iocopnst 24684 icchmeo 24685 icchmeoOLD 24686 xrhmeo 24691 icccvx 24695 cnheiborlem 24700 htpycc 24726 pcocn 24764 pcohtpylem 24766 pcopt 24769 pcopt2 24770 pcoass 24771 pcorevlem 24773 ivthlem2 25201 ivthlem3 25202 ivthicc 25207 evthicc 25208 ovolficcss 25218 ovolicc1 25265 ovolicc2 25271 ovolicc 25272 iccmbl 25315 ovolioo 25317 dyadss 25343 volcn 25355 volivth 25356 vitalilem2 25358 vitalilem4 25360 mbfimaicc 25380 mbfi1fseqlem4 25468 itgioo 25565 rollelem 25741 rolle 25742 cmvth 25743 mvth 25744 dvlip 25745 c1liplem1 25748 c1lip1 25749 c1lip3 25751 dvgt0lem1 25754 dvgt0lem2 25755 dvgt0 25756 dvlt0 25757 dvge0 25758 dvle 25759 dvivthlem1 25760 dvivth 25762 dvne0 25763 lhop1lem 25765 dvcvx 25772 dvfsumle 25773 dvfsumge 25774 dvfsumabs 25775 ftc1lem1 25787 ftc1a 25789 ftc1lem4 25791 ftc1lem5 25792 ftc1lem6 25793 ftc1 25794 ftc1cn 25795 ftc2 25796 ftc2ditglem 25797 ftc2ditg 25798 itgparts 25799 itgsubstlem 25800 itgpowd 25802 aalioulem3 26083 reeff1olem 26194 efcvx 26197 pilem3 26201 pige3ALT 26265 sinord 26279 recosf1o 26280 resinf1o 26281 efif1olem4 26290 asinrecl 26643 acosrecl 26644 emre 26746 pntlem3 27348 ttgcontlem1 28409 signsply0 33860 iblidicc 33902 ftc2re 33908 iccsconn 34537 iccllysconn 34539 cvmliftlem10 34583 ivthALT 35523 sin2h 36781 cos2h 36782 mblfinlem2 36829 ftc1cnnclem 36862 ftc1cnnc 36863 ftc1anclem7 36870 ftc1anc 36872 ftc2nc 36873 areacirclem2 36880 areacirclem3 36881 areacirclem4 36882 areacirc 36884 iccbnd 37011 icccmpALT 37012 arearect 42266 areaquad 42267 lhe4.4ex1a 43390 lefldiveq 44300 itgsin0pilem1 44964 ibliccsinexp 44965 iblioosinexp 44967 itgsinexplem1 44968 itgsinexp 44969 iblspltprt 44987 fourierdlem5 45126 fourierdlem9 45130 fourierdlem18 45139 fourierdlem24 45145 fourierdlem62 45182 fourierdlem66 45186 fourierdlem74 45194 fourierdlem75 45195 fourierdlem83 45203 fourierdlem87 45207 fourierdlem93 45213 fourierdlem95 45215 fourierdlem102 45222 fourierdlem103 45223 fourierdlem104 45224 fourierdlem112 45232 fourierdlem114 45234 sqwvfoura 45242 sqwvfourb 45243 |
Copyright terms: Public domain | W3C validator |