| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccssre | Structured version Visualization version GIF version | ||
| Description: A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.) |
| Ref | Expression |
|---|---|
| iccssre | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc2 13372 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | |
| 2 | 1 | biimp3a 1471 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
| 3 | 2 | simp1d 1142 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
| 4 | 3 | 3expia 1121 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ)) |
| 5 | 4 | ssrdv 3952 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ⊆ wss 3914 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 ≤ cle 11209 [,]cicc 13309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-icc 13313 |
| This theorem is referenced by: iccssred 13395 iccsupr 13403 iccsplit 13446 iccshftri 13448 iccshftli 13450 iccdili 13452 icccntri 13454 unitssre 13460 supicc 13462 supiccub 13463 supicclub 13464 icccld 24654 iccntr 24710 icccmplem2 24712 icccmplem3 24713 icccmp 24714 retopconn 24718 iccconn 24719 cnmpopc 24822 iihalf1cn 24826 iihalf1cnOLD 24827 iihalf2cn 24829 iihalf2cnOLD 24830 icoopnst 24836 iocopnst 24837 icchmeo 24838 icchmeoOLD 24839 xrhmeo 24844 icccvx 24848 cnheiborlem 24853 htpycc 24879 pcocn 24917 pcohtpylem 24919 pcopt 24922 pcopt2 24923 pcoass 24924 pcorevlem 24926 ivthlem2 25353 ivthlem3 25354 ivthicc 25359 evthicc 25360 ovolficcss 25370 ovolicc1 25417 ovolicc2 25423 ovolicc 25424 iccmbl 25467 ovolioo 25469 dyadss 25495 volcn 25507 volivth 25508 vitalilem2 25510 vitalilem4 25512 mbfimaicc 25532 mbfi1fseqlem4 25619 itgioo 25717 rollelem 25893 rolle 25894 cmvthOLD 25896 mvth 25897 dvlip 25898 c1liplem1 25901 c1lip1 25902 c1lip3 25904 dvgt0lem1 25907 dvgt0lem2 25908 dvgt0 25909 dvlt0 25910 dvge0 25911 dvle 25912 dvivthlem1 25913 dvivth 25915 dvne0 25916 lhop1lem 25918 dvcvx 25925 dvfsumleOLD 25927 dvfsumge 25928 dvfsumabs 25929 ftc1lem1 25942 ftc1a 25944 ftc1lem4 25946 ftc1lem5 25947 ftc1lem6 25948 ftc1 25949 ftc1cn 25950 ftc2 25951 ftc2ditglem 25952 ftc2ditg 25953 itgparts 25954 itgsubstlem 25955 itgpowd 25957 aalioulem3 26242 reeff1olem 26356 efcvx 26359 pilem3 26363 pige3ALT 26429 sinord 26443 recosf1o 26444 resinf1o 26445 efif1olem4 26454 asinrecl 26812 acosrecl 26813 emre 26916 pntlem3 27520 ttgcontlem1 28812 signsply0 34542 iblidicc 34583 ftc2re 34589 iccsconn 35235 iccllysconn 35237 cvmliftlem10 35281 ivthALT 36323 sin2h 37604 cos2h 37605 mblfinlem2 37652 ftc1cnnclem 37685 ftc1cnnc 37686 ftc1anclem7 37693 ftc1anc 37695 ftc2nc 37696 areacirclem2 37703 areacirclem3 37704 areacirclem4 37705 areacirc 37707 iccbnd 37834 icccmpALT 37835 arearect 43204 areaquad 43205 lhe4.4ex1a 44318 lefldiveq 45290 itgsin0pilem1 45948 ibliccsinexp 45949 iblioosinexp 45951 itgsinexplem1 45952 itgsinexp 45953 iblspltprt 45971 fourierdlem5 46110 fourierdlem9 46114 fourierdlem18 46123 fourierdlem24 46129 fourierdlem62 46166 fourierdlem66 46170 fourierdlem74 46178 fourierdlem75 46179 fourierdlem83 46187 fourierdlem87 46191 fourierdlem93 46197 fourierdlem95 46199 fourierdlem102 46206 fourierdlem103 46207 fourierdlem104 46208 fourierdlem112 46216 fourierdlem114 46218 sqwvfoura 46226 sqwvfourb 46227 |
| Copyright terms: Public domain | W3C validator |