Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0xadd Structured version   Visualization version   GIF version

Theorem sge0xadd 46391
Description: The extended addition of two generalized sums of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0xadd.kph 𝑘𝜑
sge0xadd.a (𝜑𝐴𝑉)
sge0xadd.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
sge0xadd.c ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0xadd (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem sge0xadd
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴𝐵)) = +∞)
21oveq1d 7446 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = (+∞ +𝑒^‘(𝑘𝐴𝐶))))
3 sge0xadd.kph . . . . . 6 𝑘𝜑
4 sge0xadd.a . . . . . 6 (𝜑𝐴𝑉)
5 sge0xadd.c . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
63, 4, 5sge0xrclmpt 46384 . . . . 5 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ*)
7 eqid 2735 . . . . . . 7 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
83, 5, 7fmptdf 7137 . . . . . 6 (𝜑 → (𝑘𝐴𝐶):𝐴⟶(0[,]+∞))
94, 8sge0nemnf 46376 . . . . 5 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ≠ -∞)
10 xaddpnf2 13266 . . . . 5 (((Σ^‘(𝑘𝐴𝐶)) ∈ ℝ* ∧ (Σ^‘(𝑘𝐴𝐶)) ≠ -∞) → (+∞ +𝑒^‘(𝑘𝐴𝐶))) = +∞)
116, 9, 10syl2anc 584 . . . 4 (𝜑 → (+∞ +𝑒^‘(𝑘𝐴𝐶))) = +∞)
1211adantr 480 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (+∞ +𝑒^‘(𝑘𝐴𝐶))) = +∞)
13 sge0xadd.b . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
14 ge0xaddcl 13499 . . . . . . . 8 ((𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐵 +𝑒 𝐶) ∈ (0[,]+∞))
1513, 5, 14syl2anc 584 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐵 +𝑒 𝐶) ∈ (0[,]+∞))
163, 4, 15sge0xrclmpt 46384 . . . . . 6 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) ∈ ℝ*)
1716adantr 480 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) ∈ ℝ*)
18 id 22 . . . . . . . 8 ((Σ^‘(𝑘𝐴𝐵)) = +∞ → (Σ^‘(𝑘𝐴𝐵)) = +∞)
1918eqcomd 2741 . . . . . . 7 ((Σ^‘(𝑘𝐴𝐵)) = +∞ → +∞ = (Σ^‘(𝑘𝐴𝐵)))
2019adantl 481 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → +∞ = (Σ^‘(𝑘𝐴𝐵)))
214elexd 3502 . . . . . . . 8 (𝜑𝐴 ∈ V)
22 iccssxr 13467 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
2322, 13sselid 3993 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ*)
2423, 5xadd0ge 45271 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ≤ (𝐵 +𝑒 𝐶))
253, 21, 13, 15, 24sge0lempt 46366 . . . . . . 7 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
2625adantr 480 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴𝐵)) ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
2720, 26eqbrtrd 5170 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → +∞ ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
2817, 27xrgepnfd 45281 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = +∞)
2928eqcomd 2741 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → +∞ = (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
302, 12, 293eqtrrd 2780 . 2 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
31 simpl 482 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → 𝜑)
32 simpr 484 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞)
33 eqid 2735 . . . . . . 7 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
343, 13, 33fmptdf 7137 . . . . . 6 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
354, 34sge0repnf 46342 . . . . 5 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞))
3635adantr 480 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → ((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞))
3732, 36mpbird 257 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
38 simpr 484 . . . . . . 7 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴𝐶)) = +∞)
3938oveq2d 7447 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒 +∞))
404, 34sge0xrcl 46341 . . . . . . . 8 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ*)
414, 34sge0nemnf 46376 . . . . . . . 8 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ≠ -∞)
42 xaddpnf1 13265 . . . . . . . 8 (((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ* ∧ (Σ^‘(𝑘𝐴𝐵)) ≠ -∞) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒 +∞) = +∞)
4340, 41, 42syl2anc 584 . . . . . . 7 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) +𝑒 +∞) = +∞)
4443adantr 480 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒 +∞) = +∞)
4516adantr 480 . . . . . . . 8 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) ∈ ℝ*)
46 id 22 . . . . . . . . . . 11 ((Σ^‘(𝑘𝐴𝐶)) = +∞ → (Σ^‘(𝑘𝐴𝐶)) = +∞)
4746eqcomd 2741 . . . . . . . . . 10 ((Σ^‘(𝑘𝐴𝐶)) = +∞ → +∞ = (Σ^‘(𝑘𝐴𝐶)))
4847adantl 481 . . . . . . . . 9 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → +∞ = (Σ^‘(𝑘𝐴𝐶)))
4922, 5sselid 3993 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ*)
5049, 13xadd0ge2 45291 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐶 ≤ (𝐵 +𝑒 𝐶))
513, 4, 5, 15, 50sge0lempt 46366 . . . . . . . . . 10 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
5251adantr 480 . . . . . . . . 9 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴𝐶)) ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
5348, 52eqbrtrd 5170 . . . . . . . 8 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → +∞ ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
5445, 53xrgepnfd 45281 . . . . . . 7 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = +∞)
5554eqcomd 2741 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → +∞ = (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
5639, 44, 553eqtrrd 2780 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
5756adantlr 715 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
58 simpl 482 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ))
59 simpr 484 . . . . . . 7 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞)
604, 8sge0repnf 46342 . . . . . . . 8 (𝜑 → ((Σ^‘(𝑘𝐴𝐶)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞))
6160adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → ((Σ^‘(𝑘𝐴𝐶)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞))
6259, 61mpbird 257 . . . . . 6 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
6362adantlr 715 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
644ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → 𝐴𝑉)
65 nfcv 2903 . . . . . . . . . . . . . 14 𝑘Σ^
66 nfmpt1 5256 . . . . . . . . . . . . . 14 𝑘(𝑘𝐴𝐵)
6765, 66nffv 6917 . . . . . . . . . . . . 13 𝑘^‘(𝑘𝐴𝐵))
68 nfcv 2903 . . . . . . . . . . . . 13 𝑘
6967, 68nfel 2918 . . . . . . . . . . . 12 𝑘^‘(𝑘𝐴𝐵)) ∈ ℝ
703, 69nfan 1897 . . . . . . . . . . 11 𝑘(𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
71 nfv 1912 . . . . . . . . . . 11 𝑘 𝑗𝐴
7270, 71nfan 1897 . . . . . . . . . 10 𝑘((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴)
73 nfcsb1v 3933 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐵
7473nfel1 2920 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐵 ∈ (0[,)+∞)
7572, 74nfim 1894 . . . . . . . . 9 𝑘(((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
76 eleq1w 2822 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
7776anbi2d 630 . . . . . . . . . 10 (𝑘 = 𝑗 → (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) ↔ ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴)))
78 csbeq1a 3922 . . . . . . . . . . 11 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
7978eleq1d 2824 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵 ∈ (0[,)+∞) ↔ 𝑗 / 𝑘𝐵 ∈ (0[,)+∞)))
8077, 79imbi12d 344 . . . . . . . . 9 (𝑘 = 𝑗 → ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,)+∞)) ↔ (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))))
814adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝐴𝑉)
8213adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
83 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
8470, 81, 82, 83sge0rernmpt 46378 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
8575, 80, 84chvarfv 2238 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
8685adantlr 715 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
87 nfmpt1 5256 . . . . . . . . . . . . . 14 𝑘(𝑘𝐴𝐶)
8865, 87nffv 6917 . . . . . . . . . . . . 13 𝑘^‘(𝑘𝐴𝐶))
8988, 68nfel 2918 . . . . . . . . . . . 12 𝑘^‘(𝑘𝐴𝐶)) ∈ ℝ
903, 89nfan 1897 . . . . . . . . . . 11 𝑘(𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
9190, 71nfan 1897 . . . . . . . . . 10 𝑘((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴)
92 nfcsb1v 3933 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐶
9392nfel1 2920 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐶 ∈ (0[,)+∞)
9491, 93nfim 1894 . . . . . . . . 9 𝑘(((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
9576anbi2d 630 . . . . . . . . . 10 (𝑘 = 𝑗 → (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑘𝐴) ↔ ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴)))
96 csbeq1a 3922 . . . . . . . . . . 11 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
9796eleq1d 2824 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐶 ∈ (0[,)+∞) ↔ 𝑗 / 𝑘𝐶 ∈ (0[,)+∞)))
9895, 97imbi12d 344 . . . . . . . . 9 (𝑘 = 𝑗 → ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ (0[,)+∞)) ↔ (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))))
994adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → 𝐴𝑉)
1005adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
101 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
10290, 99, 100, 101sge0rernmpt 46378 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ (0[,)+∞))
10394, 98, 102chvarfv 2238 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
104103adantllr 719 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
105 nfcv 2903 . . . . . . . . . 10 𝑗𝐵
106105, 73, 78cbvmpt 5259 . . . . . . . . 9 (𝑘𝐴𝐵) = (𝑗𝐴𝑗 / 𝑘𝐵)
107106fveq2i 6910 . . . . . . . 8 ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵))
108 simplr 769 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
109107, 108eqeltrrid 2844 . . . . . . 7 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) ∈ ℝ)
110 nfcv 2903 . . . . . . . . . 10 𝑗𝐶
111110, 92, 96cbvmpt 5259 . . . . . . . . 9 (𝑘𝐴𝐶) = (𝑗𝐴𝑗 / 𝑘𝐶)
112111fveq2i 6910 . . . . . . . 8 ^‘(𝑘𝐴𝐶)) = (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶))
113 simpr 484 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
114112, 113eqeltrrid 2844 . . . . . . 7 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)) ∈ ℝ)
11564, 86, 104, 109, 114sge0xaddlem2 46390 . . . . . 6 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑗𝐴 ↦ (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶))) = ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) +𝑒^‘(𝑗𝐴𝑗 / 𝑘𝐶))))
116 nfcv 2903 . . . . . . . . 9 𝑗(𝐵 +𝑒 𝐶)
117 nfcv 2903 . . . . . . . . . 10 𝑘 +𝑒
11873, 117, 92nfov 7461 . . . . . . . . 9 𝑘(𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶)
11978, 96oveq12d 7449 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐵 +𝑒 𝐶) = (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶))
120116, 118, 119cbvmpt 5259 . . . . . . . 8 (𝑘𝐴 ↦ (𝐵 +𝑒 𝐶)) = (𝑗𝐴 ↦ (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶))
121120fveq2i 6910 . . . . . . 7 ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = (Σ^‘(𝑗𝐴 ↦ (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶)))
122107, 112oveq12i 7443 . . . . . . 7 ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) +𝑒^‘(𝑗𝐴𝑗 / 𝑘𝐶)))
123121, 122eqeq12i 2753 . . . . . 6 ((Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) ↔ (Σ^‘(𝑗𝐴 ↦ (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶))) = ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) +𝑒^‘(𝑗𝐴𝑗 / 𝑘𝐶))))
124115, 123sylibr 234 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
12558, 63, 124syl2anc 584 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
12657, 125pm2.61dan 813 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
12731, 37, 126syl2anc 584 . 2 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
12830, 127pm2.61dan 813 1 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wnf 1780  wcel 2106  wne 2938  Vcvv 3478  csb 3908   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  +∞cpnf 11290  -∞cmnf 11291  *cxr 11292  cle 11294   +𝑒 cxad 13150  [,)cico 13386  [,]cicc 13387  Σ^csumge0 46318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xadd 13153  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-sumge0 46319
This theorem is referenced by:  ovnsubaddlem1  46526  hspmbllem2  46583  ovolval5lem1  46608
  Copyright terms: Public domain W3C validator