Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0xadd Structured version   Visualization version   GIF version

Theorem sge0xadd 44762
Description: The extended addition of two generalized sums of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0xadd.kph 𝑘𝜑
sge0xadd.a (𝜑𝐴𝑉)
sge0xadd.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
sge0xadd.c ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0xadd (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem sge0xadd
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpr 486 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴𝐵)) = +∞)
21oveq1d 7373 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = (+∞ +𝑒^‘(𝑘𝐴𝐶))))
3 sge0xadd.kph . . . . . 6 𝑘𝜑
4 sge0xadd.a . . . . . 6 (𝜑𝐴𝑉)
5 sge0xadd.c . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
63, 4, 5sge0xrclmpt 44755 . . . . 5 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ*)
7 eqid 2733 . . . . . . 7 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
83, 5, 7fmptdf 7066 . . . . . 6 (𝜑 → (𝑘𝐴𝐶):𝐴⟶(0[,]+∞))
94, 8sge0nemnf 44747 . . . . 5 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ≠ -∞)
10 xaddpnf2 13152 . . . . 5 (((Σ^‘(𝑘𝐴𝐶)) ∈ ℝ* ∧ (Σ^‘(𝑘𝐴𝐶)) ≠ -∞) → (+∞ +𝑒^‘(𝑘𝐴𝐶))) = +∞)
116, 9, 10syl2anc 585 . . . 4 (𝜑 → (+∞ +𝑒^‘(𝑘𝐴𝐶))) = +∞)
1211adantr 482 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (+∞ +𝑒^‘(𝑘𝐴𝐶))) = +∞)
13 sge0xadd.b . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
14 ge0xaddcl 13385 . . . . . . . 8 ((𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐵 +𝑒 𝐶) ∈ (0[,]+∞))
1513, 5, 14syl2anc 585 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐵 +𝑒 𝐶) ∈ (0[,]+∞))
163, 4, 15sge0xrclmpt 44755 . . . . . 6 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) ∈ ℝ*)
1716adantr 482 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) ∈ ℝ*)
18 id 22 . . . . . . . 8 ((Σ^‘(𝑘𝐴𝐵)) = +∞ → (Σ^‘(𝑘𝐴𝐵)) = +∞)
1918eqcomd 2739 . . . . . . 7 ((Σ^‘(𝑘𝐴𝐵)) = +∞ → +∞ = (Σ^‘(𝑘𝐴𝐵)))
2019adantl 483 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → +∞ = (Σ^‘(𝑘𝐴𝐵)))
214elexd 3464 . . . . . . . 8 (𝜑𝐴 ∈ V)
22 iccssxr 13353 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
2322, 13sselid 3943 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ*)
2423, 5xadd0ge 43641 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ≤ (𝐵 +𝑒 𝐶))
253, 21, 13, 15, 24sge0lempt 44737 . . . . . . 7 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
2625adantr 482 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴𝐵)) ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
2720, 26eqbrtrd 5128 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → +∞ ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
2817, 27xrgepnfd 43652 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = +∞)
2928eqcomd 2739 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → +∞ = (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
302, 12, 293eqtrrd 2778 . 2 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
31 simpl 484 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → 𝜑)
32 simpr 486 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞)
33 eqid 2733 . . . . . . 7 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
343, 13, 33fmptdf 7066 . . . . . 6 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
354, 34sge0repnf 44713 . . . . 5 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞))
3635adantr 482 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → ((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞))
3732, 36mpbird 257 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
38 simpr 486 . . . . . . 7 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴𝐶)) = +∞)
3938oveq2d 7374 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒 +∞))
404, 34sge0xrcl 44712 . . . . . . . 8 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ*)
414, 34sge0nemnf 44747 . . . . . . . 8 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ≠ -∞)
42 xaddpnf1 13151 . . . . . . . 8 (((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ* ∧ (Σ^‘(𝑘𝐴𝐵)) ≠ -∞) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒 +∞) = +∞)
4340, 41, 42syl2anc 585 . . . . . . 7 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) +𝑒 +∞) = +∞)
4443adantr 482 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒 +∞) = +∞)
4516adantr 482 . . . . . . . 8 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) ∈ ℝ*)
46 id 22 . . . . . . . . . . 11 ((Σ^‘(𝑘𝐴𝐶)) = +∞ → (Σ^‘(𝑘𝐴𝐶)) = +∞)
4746eqcomd 2739 . . . . . . . . . 10 ((Σ^‘(𝑘𝐴𝐶)) = +∞ → +∞ = (Σ^‘(𝑘𝐴𝐶)))
4847adantl 483 . . . . . . . . 9 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → +∞ = (Σ^‘(𝑘𝐴𝐶)))
4922, 5sselid 3943 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ*)
5049, 13xadd0ge2 43662 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐶 ≤ (𝐵 +𝑒 𝐶))
513, 4, 5, 15, 50sge0lempt 44737 . . . . . . . . . 10 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
5251adantr 482 . . . . . . . . 9 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴𝐶)) ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
5348, 52eqbrtrd 5128 . . . . . . . 8 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → +∞ ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
5445, 53xrgepnfd 43652 . . . . . . 7 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = +∞)
5554eqcomd 2739 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → +∞ = (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
5639, 44, 553eqtrrd 2778 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
5756adantlr 714 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
58 simpl 484 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ))
59 simpr 486 . . . . . . 7 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞)
604, 8sge0repnf 44713 . . . . . . . 8 (𝜑 → ((Σ^‘(𝑘𝐴𝐶)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞))
6160adantr 482 . . . . . . 7 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → ((Σ^‘(𝑘𝐴𝐶)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞))
6259, 61mpbird 257 . . . . . 6 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
6362adantlr 714 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
644ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → 𝐴𝑉)
65 nfcv 2904 . . . . . . . . . . . . . 14 𝑘Σ^
66 nfmpt1 5214 . . . . . . . . . . . . . 14 𝑘(𝑘𝐴𝐵)
6765, 66nffv 6853 . . . . . . . . . . . . 13 𝑘^‘(𝑘𝐴𝐵))
68 nfcv 2904 . . . . . . . . . . . . 13 𝑘
6967, 68nfel 2918 . . . . . . . . . . . 12 𝑘^‘(𝑘𝐴𝐵)) ∈ ℝ
703, 69nfan 1903 . . . . . . . . . . 11 𝑘(𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
71 nfv 1918 . . . . . . . . . . 11 𝑘 𝑗𝐴
7270, 71nfan 1903 . . . . . . . . . 10 𝑘((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴)
73 nfcsb1v 3881 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐵
7473nfel1 2920 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐵 ∈ (0[,)+∞)
7572, 74nfim 1900 . . . . . . . . 9 𝑘(((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
76 eleq1w 2817 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
7776anbi2d 630 . . . . . . . . . 10 (𝑘 = 𝑗 → (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) ↔ ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴)))
78 csbeq1a 3870 . . . . . . . . . . 11 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
7978eleq1d 2819 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵 ∈ (0[,)+∞) ↔ 𝑗 / 𝑘𝐵 ∈ (0[,)+∞)))
8077, 79imbi12d 345 . . . . . . . . 9 (𝑘 = 𝑗 → ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,)+∞)) ↔ (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))))
814adantr 482 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝐴𝑉)
8213adantlr 714 . . . . . . . . . 10 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
83 simpr 486 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
8470, 81, 82, 83sge0rernmpt 44749 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
8575, 80, 84chvarfv 2234 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
8685adantlr 714 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
87 nfmpt1 5214 . . . . . . . . . . . . . 14 𝑘(𝑘𝐴𝐶)
8865, 87nffv 6853 . . . . . . . . . . . . 13 𝑘^‘(𝑘𝐴𝐶))
8988, 68nfel 2918 . . . . . . . . . . . 12 𝑘^‘(𝑘𝐴𝐶)) ∈ ℝ
903, 89nfan 1903 . . . . . . . . . . 11 𝑘(𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
9190, 71nfan 1903 . . . . . . . . . 10 𝑘((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴)
92 nfcsb1v 3881 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐶
9392nfel1 2920 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐶 ∈ (0[,)+∞)
9491, 93nfim 1900 . . . . . . . . 9 𝑘(((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
9576anbi2d 630 . . . . . . . . . 10 (𝑘 = 𝑗 → (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑘𝐴) ↔ ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴)))
96 csbeq1a 3870 . . . . . . . . . . 11 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
9796eleq1d 2819 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐶 ∈ (0[,)+∞) ↔ 𝑗 / 𝑘𝐶 ∈ (0[,)+∞)))
9895, 97imbi12d 345 . . . . . . . . 9 (𝑘 = 𝑗 → ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ (0[,)+∞)) ↔ (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))))
994adantr 482 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → 𝐴𝑉)
1005adantlr 714 . . . . . . . . . 10 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
101 simpr 486 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
10290, 99, 100, 101sge0rernmpt 44749 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ (0[,)+∞))
10394, 98, 102chvarfv 2234 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
104103adantllr 718 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
105 nfcv 2904 . . . . . . . . . 10 𝑗𝐵
106105, 73, 78cbvmpt 5217 . . . . . . . . 9 (𝑘𝐴𝐵) = (𝑗𝐴𝑗 / 𝑘𝐵)
107106fveq2i 6846 . . . . . . . 8 ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵))
108 simplr 768 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
109107, 108eqeltrrid 2839 . . . . . . 7 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) ∈ ℝ)
110 nfcv 2904 . . . . . . . . . 10 𝑗𝐶
111110, 92, 96cbvmpt 5217 . . . . . . . . 9 (𝑘𝐴𝐶) = (𝑗𝐴𝑗 / 𝑘𝐶)
112111fveq2i 6846 . . . . . . . 8 ^‘(𝑘𝐴𝐶)) = (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶))
113 simpr 486 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
114112, 113eqeltrrid 2839 . . . . . . 7 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)) ∈ ℝ)
11564, 86, 104, 109, 114sge0xaddlem2 44761 . . . . . 6 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑗𝐴 ↦ (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶))) = ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) +𝑒^‘(𝑗𝐴𝑗 / 𝑘𝐶))))
116 nfcv 2904 . . . . . . . . 9 𝑗(𝐵 +𝑒 𝐶)
117 nfcv 2904 . . . . . . . . . 10 𝑘 +𝑒
11873, 117, 92nfov 7388 . . . . . . . . 9 𝑘(𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶)
11978, 96oveq12d 7376 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐵 +𝑒 𝐶) = (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶))
120116, 118, 119cbvmpt 5217 . . . . . . . 8 (𝑘𝐴 ↦ (𝐵 +𝑒 𝐶)) = (𝑗𝐴 ↦ (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶))
121120fveq2i 6846 . . . . . . 7 ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = (Σ^‘(𝑗𝐴 ↦ (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶)))
122107, 112oveq12i 7370 . . . . . . 7 ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) +𝑒^‘(𝑗𝐴𝑗 / 𝑘𝐶)))
123121, 122eqeq12i 2751 . . . . . 6 ((Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) ↔ (Σ^‘(𝑗𝐴 ↦ (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶))) = ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) +𝑒^‘(𝑗𝐴𝑗 / 𝑘𝐶))))
124115, 123sylibr 233 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
12558, 63, 124syl2anc 585 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
12657, 125pm2.61dan 812 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
12731, 37, 126syl2anc 585 . 2 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
12830, 127pm2.61dan 812 1 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wnf 1786  wcel 2107  wne 2940  Vcvv 3444  csb 3856   class class class wbr 5106  cmpt 5189  cfv 6497  (class class class)co 7358  cr 11055  0cc0 11056  +∞cpnf 11191  -∞cmnf 11192  *cxr 11193  cle 11195   +𝑒 cxad 13036  [,)cico 13272  [,]cicc 13273  Σ^csumge0 44689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-inf2 9582  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-sup 9383  df-inf 9384  df-oi 9451  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-2 12221  df-3 12222  df-n0 12419  df-z 12505  df-uz 12769  df-q 12879  df-rp 12921  df-xadd 13039  df-ico 13276  df-icc 13277  df-fz 13431  df-fzo 13574  df-seq 13913  df-exp 13974  df-hash 14237  df-cj 14990  df-re 14991  df-im 14992  df-sqrt 15126  df-abs 15127  df-clim 15376  df-sum 15577  df-sumge0 44690
This theorem is referenced by:  ovnsubaddlem1  44897  hspmbllem2  44954  ovolval5lem1  44979
  Copyright terms: Public domain W3C validator