Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0xadd Structured version   Visualization version   GIF version

Theorem sge0xadd 42707
Description: The extended addition of two generalized sums of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0xadd.kph 𝑘𝜑
sge0xadd.a (𝜑𝐴𝑉)
sge0xadd.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
sge0xadd.c ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0xadd (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem sge0xadd
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴𝐵)) = +∞)
21oveq1d 7163 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = (+∞ +𝑒^‘(𝑘𝐴𝐶))))
3 sge0xadd.kph . . . . . 6 𝑘𝜑
4 sge0xadd.a . . . . . 6 (𝜑𝐴𝑉)
5 sge0xadd.c . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
63, 4, 5sge0xrclmpt 42700 . . . . 5 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ*)
7 eqid 2819 . . . . . . 7 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
83, 5, 7fmptdf 6874 . . . . . 6 (𝜑 → (𝑘𝐴𝐶):𝐴⟶(0[,]+∞))
94, 8sge0nemnf 42692 . . . . 5 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ≠ -∞)
10 xaddpnf2 12612 . . . . 5 (((Σ^‘(𝑘𝐴𝐶)) ∈ ℝ* ∧ (Σ^‘(𝑘𝐴𝐶)) ≠ -∞) → (+∞ +𝑒^‘(𝑘𝐴𝐶))) = +∞)
116, 9, 10syl2anc 586 . . . 4 (𝜑 → (+∞ +𝑒^‘(𝑘𝐴𝐶))) = +∞)
1211adantr 483 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (+∞ +𝑒^‘(𝑘𝐴𝐶))) = +∞)
13 sge0xadd.b . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
14 ge0xaddcl 12842 . . . . . . . 8 ((𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐵 +𝑒 𝐶) ∈ (0[,]+∞))
1513, 5, 14syl2anc 586 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐵 +𝑒 𝐶) ∈ (0[,]+∞))
163, 4, 15sge0xrclmpt 42700 . . . . . 6 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) ∈ ℝ*)
1716adantr 483 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) ∈ ℝ*)
18 id 22 . . . . . . . 8 ((Σ^‘(𝑘𝐴𝐵)) = +∞ → (Σ^‘(𝑘𝐴𝐵)) = +∞)
1918eqcomd 2825 . . . . . . 7 ((Σ^‘(𝑘𝐴𝐵)) = +∞ → +∞ = (Σ^‘(𝑘𝐴𝐵)))
2019adantl 484 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → +∞ = (Σ^‘(𝑘𝐴𝐵)))
214elexd 3513 . . . . . . . 8 (𝜑𝐴 ∈ V)
22 iccssxr 12811 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
2322, 13sseldi 3963 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ*)
2423, 5xadd0ge 41577 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ≤ (𝐵 +𝑒 𝐶))
253, 21, 13, 15, 24sge0lempt 42682 . . . . . . 7 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
2625adantr 483 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴𝐵)) ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
2720, 26eqbrtrd 5079 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → +∞ ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
2817, 27xrgepnfd 41588 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = +∞)
2928eqcomd 2825 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → +∞ = (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
302, 12, 293eqtrrd 2859 . 2 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
31 simpl 485 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → 𝜑)
32 simpr 487 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞)
33 eqid 2819 . . . . . . 7 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
343, 13, 33fmptdf 6874 . . . . . 6 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
354, 34sge0repnf 42658 . . . . 5 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞))
3635adantr 483 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → ((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞))
3732, 36mpbird 259 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
38 simpr 487 . . . . . . 7 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴𝐶)) = +∞)
3938oveq2d 7164 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒 +∞))
404, 34sge0xrcl 42657 . . . . . . . 8 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ*)
414, 34sge0nemnf 42692 . . . . . . . 8 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ≠ -∞)
42 xaddpnf1 12611 . . . . . . . 8 (((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ* ∧ (Σ^‘(𝑘𝐴𝐵)) ≠ -∞) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒 +∞) = +∞)
4340, 41, 42syl2anc 586 . . . . . . 7 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) +𝑒 +∞) = +∞)
4443adantr 483 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒 +∞) = +∞)
4516adantr 483 . . . . . . . 8 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) ∈ ℝ*)
46 id 22 . . . . . . . . . . 11 ((Σ^‘(𝑘𝐴𝐶)) = +∞ → (Σ^‘(𝑘𝐴𝐶)) = +∞)
4746eqcomd 2825 . . . . . . . . . 10 ((Σ^‘(𝑘𝐴𝐶)) = +∞ → +∞ = (Σ^‘(𝑘𝐴𝐶)))
4847adantl 484 . . . . . . . . 9 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → +∞ = (Σ^‘(𝑘𝐴𝐶)))
4922, 5sseldi 3963 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ*)
5049, 13xadd0ge2 41598 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐶 ≤ (𝐵 +𝑒 𝐶))
513, 4, 5, 15, 50sge0lempt 42682 . . . . . . . . . 10 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
5251adantr 483 . . . . . . . . 9 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴𝐶)) ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
5348, 52eqbrtrd 5079 . . . . . . . 8 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → +∞ ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
5445, 53xrgepnfd 41588 . . . . . . 7 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = +∞)
5554eqcomd 2825 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → +∞ = (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
5639, 44, 553eqtrrd 2859 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
5756adantlr 713 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
58 simpl 485 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ))
59 simpr 487 . . . . . . 7 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞)
604, 8sge0repnf 42658 . . . . . . . 8 (𝜑 → ((Σ^‘(𝑘𝐴𝐶)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞))
6160adantr 483 . . . . . . 7 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → ((Σ^‘(𝑘𝐴𝐶)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞))
6259, 61mpbird 259 . . . . . 6 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
6362adantlr 713 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
644ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → 𝐴𝑉)
65 nfcv 2975 . . . . . . . . . . . . . 14 𝑘Σ^
66 nfmpt1 5155 . . . . . . . . . . . . . 14 𝑘(𝑘𝐴𝐵)
6765, 66nffv 6673 . . . . . . . . . . . . 13 𝑘^‘(𝑘𝐴𝐵))
68 nfcv 2975 . . . . . . . . . . . . 13 𝑘
6967, 68nfel 2990 . . . . . . . . . . . 12 𝑘^‘(𝑘𝐴𝐵)) ∈ ℝ
703, 69nfan 1894 . . . . . . . . . . 11 𝑘(𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
71 nfv 1909 . . . . . . . . . . 11 𝑘 𝑗𝐴
7270, 71nfan 1894 . . . . . . . . . 10 𝑘((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴)
73 nfcsb1v 3905 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐵
7473nfel1 2992 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐵 ∈ (0[,)+∞)
7572, 74nfim 1891 . . . . . . . . 9 𝑘(((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
76 eleq1w 2893 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
7776anbi2d 630 . . . . . . . . . 10 (𝑘 = 𝑗 → (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) ↔ ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴)))
78 csbeq1a 3895 . . . . . . . . . . 11 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
7978eleq1d 2895 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵 ∈ (0[,)+∞) ↔ 𝑗 / 𝑘𝐵 ∈ (0[,)+∞)))
8077, 79imbi12d 347 . . . . . . . . 9 (𝑘 = 𝑗 → ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,)+∞)) ↔ (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))))
814adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝐴𝑉)
8213adantlr 713 . . . . . . . . . 10 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
83 simpr 487 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
8470, 81, 82, 83sge0rernmpt 42694 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
8575, 80, 84chvarfv 2235 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
8685adantlr 713 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
87 nfmpt1 5155 . . . . . . . . . . . . . 14 𝑘(𝑘𝐴𝐶)
8865, 87nffv 6673 . . . . . . . . . . . . 13 𝑘^‘(𝑘𝐴𝐶))
8988, 68nfel 2990 . . . . . . . . . . . 12 𝑘^‘(𝑘𝐴𝐶)) ∈ ℝ
903, 89nfan 1894 . . . . . . . . . . 11 𝑘(𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
9190, 71nfan 1894 . . . . . . . . . 10 𝑘((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴)
92 nfcsb1v 3905 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐶
9392nfel1 2992 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐶 ∈ (0[,)+∞)
9491, 93nfim 1891 . . . . . . . . 9 𝑘(((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
9576anbi2d 630 . . . . . . . . . 10 (𝑘 = 𝑗 → (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑘𝐴) ↔ ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴)))
96 csbeq1a 3895 . . . . . . . . . . 11 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
9796eleq1d 2895 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐶 ∈ (0[,)+∞) ↔ 𝑗 / 𝑘𝐶 ∈ (0[,)+∞)))
9895, 97imbi12d 347 . . . . . . . . 9 (𝑘 = 𝑗 → ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ (0[,)+∞)) ↔ (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))))
994adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → 𝐴𝑉)
1005adantlr 713 . . . . . . . . . 10 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
101 simpr 487 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
10290, 99, 100, 101sge0rernmpt 42694 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ (0[,)+∞))
10394, 98, 102chvarfv 2235 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
104103adantllr 717 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
105 nfcv 2975 . . . . . . . . . 10 𝑗𝐵
106105, 73, 78cbvmpt 5158 . . . . . . . . 9 (𝑘𝐴𝐵) = (𝑗𝐴𝑗 / 𝑘𝐵)
107106fveq2i 6666 . . . . . . . 8 ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵))
108 simplr 767 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
109107, 108eqeltrrid 2916 . . . . . . 7 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) ∈ ℝ)
110 nfcv 2975 . . . . . . . . . 10 𝑗𝐶
111110, 92, 96cbvmpt 5158 . . . . . . . . 9 (𝑘𝐴𝐶) = (𝑗𝐴𝑗 / 𝑘𝐶)
112111fveq2i 6666 . . . . . . . 8 ^‘(𝑘𝐴𝐶)) = (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶))
113 simpr 487 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
114112, 113eqeltrrid 2916 . . . . . . 7 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)) ∈ ℝ)
11564, 86, 104, 109, 114sge0xaddlem2 42706 . . . . . 6 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑗𝐴 ↦ (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶))) = ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) +𝑒^‘(𝑗𝐴𝑗 / 𝑘𝐶))))
116 nfcv 2975 . . . . . . . . 9 𝑗(𝐵 +𝑒 𝐶)
117 nfcv 2975 . . . . . . . . . 10 𝑘 +𝑒
11873, 117, 92nfov 7178 . . . . . . . . 9 𝑘(𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶)
11978, 96oveq12d 7166 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐵 +𝑒 𝐶) = (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶))
120116, 118, 119cbvmpt 5158 . . . . . . . 8 (𝑘𝐴 ↦ (𝐵 +𝑒 𝐶)) = (𝑗𝐴 ↦ (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶))
121120fveq2i 6666 . . . . . . 7 ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = (Σ^‘(𝑗𝐴 ↦ (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶)))
122107, 112oveq12i 7160 . . . . . . 7 ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) +𝑒^‘(𝑗𝐴𝑗 / 𝑘𝐶)))
123121, 122eqeq12i 2834 . . . . . 6 ((Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) ↔ (Σ^‘(𝑗𝐴 ↦ (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶))) = ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) +𝑒^‘(𝑗𝐴𝑗 / 𝑘𝐶))))
124115, 123sylibr 236 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
12558, 63, 124syl2anc 586 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
12657, 125pm2.61dan 811 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
12731, 37, 126syl2anc 586 . 2 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
12830, 127pm2.61dan 811 1 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1531  wnf 1778  wcel 2108  wne 3014  Vcvv 3493  csb 3881   class class class wbr 5057  cmpt 5137  cfv 6348  (class class class)co 7148  cr 10528  0cc0 10529  +∞cpnf 10664  -∞cmnf 10665  *cxr 10666  cle 10668   +𝑒 cxad 12497  [,)cico 12732  [,]cicc 12733  Σ^csumge0 42634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xadd 12500  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-sumge0 42635
This theorem is referenced by:  ovnsubaddlem1  42842  hspmbllem2  42899  ovolval5lem1  42924
  Copyright terms: Public domain W3C validator