Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0xadd Structured version   Visualization version   GIF version

Theorem sge0xadd 43863
Description: The extended addition of two generalized sums of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0xadd.kph 𝑘𝜑
sge0xadd.a (𝜑𝐴𝑉)
sge0xadd.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
sge0xadd.c ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0xadd (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem sge0xadd
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴𝐵)) = +∞)
21oveq1d 7270 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = (+∞ +𝑒^‘(𝑘𝐴𝐶))))
3 sge0xadd.kph . . . . . 6 𝑘𝜑
4 sge0xadd.a . . . . . 6 (𝜑𝐴𝑉)
5 sge0xadd.c . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
63, 4, 5sge0xrclmpt 43856 . . . . 5 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ*)
7 eqid 2738 . . . . . . 7 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
83, 5, 7fmptdf 6973 . . . . . 6 (𝜑 → (𝑘𝐴𝐶):𝐴⟶(0[,]+∞))
94, 8sge0nemnf 43848 . . . . 5 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ≠ -∞)
10 xaddpnf2 12890 . . . . 5 (((Σ^‘(𝑘𝐴𝐶)) ∈ ℝ* ∧ (Σ^‘(𝑘𝐴𝐶)) ≠ -∞) → (+∞ +𝑒^‘(𝑘𝐴𝐶))) = +∞)
116, 9, 10syl2anc 583 . . . 4 (𝜑 → (+∞ +𝑒^‘(𝑘𝐴𝐶))) = +∞)
1211adantr 480 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (+∞ +𝑒^‘(𝑘𝐴𝐶))) = +∞)
13 sge0xadd.b . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
14 ge0xaddcl 13123 . . . . . . . 8 ((𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐵 +𝑒 𝐶) ∈ (0[,]+∞))
1513, 5, 14syl2anc 583 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐵 +𝑒 𝐶) ∈ (0[,]+∞))
163, 4, 15sge0xrclmpt 43856 . . . . . 6 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) ∈ ℝ*)
1716adantr 480 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) ∈ ℝ*)
18 id 22 . . . . . . . 8 ((Σ^‘(𝑘𝐴𝐵)) = +∞ → (Σ^‘(𝑘𝐴𝐵)) = +∞)
1918eqcomd 2744 . . . . . . 7 ((Σ^‘(𝑘𝐴𝐵)) = +∞ → +∞ = (Σ^‘(𝑘𝐴𝐵)))
2019adantl 481 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → +∞ = (Σ^‘(𝑘𝐴𝐵)))
214elexd 3442 . . . . . . . 8 (𝜑𝐴 ∈ V)
22 iccssxr 13091 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
2322, 13sselid 3915 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ*)
2423, 5xadd0ge 42749 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ≤ (𝐵 +𝑒 𝐶))
253, 21, 13, 15, 24sge0lempt 43838 . . . . . . 7 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
2625adantr 480 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴𝐵)) ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
2720, 26eqbrtrd 5092 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → +∞ ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
2817, 27xrgepnfd 42760 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = +∞)
2928eqcomd 2744 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → +∞ = (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
302, 12, 293eqtrrd 2783 . 2 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
31 simpl 482 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → 𝜑)
32 simpr 484 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞)
33 eqid 2738 . . . . . . 7 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
343, 13, 33fmptdf 6973 . . . . . 6 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
354, 34sge0repnf 43814 . . . . 5 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞))
3635adantr 480 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → ((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞))
3732, 36mpbird 256 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
38 simpr 484 . . . . . . 7 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴𝐶)) = +∞)
3938oveq2d 7271 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒 +∞))
404, 34sge0xrcl 43813 . . . . . . . 8 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ*)
414, 34sge0nemnf 43848 . . . . . . . 8 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ≠ -∞)
42 xaddpnf1 12889 . . . . . . . 8 (((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ* ∧ (Σ^‘(𝑘𝐴𝐵)) ≠ -∞) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒 +∞) = +∞)
4340, 41, 42syl2anc 583 . . . . . . 7 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) +𝑒 +∞) = +∞)
4443adantr 480 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒 +∞) = +∞)
4516adantr 480 . . . . . . . 8 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) ∈ ℝ*)
46 id 22 . . . . . . . . . . 11 ((Σ^‘(𝑘𝐴𝐶)) = +∞ → (Σ^‘(𝑘𝐴𝐶)) = +∞)
4746eqcomd 2744 . . . . . . . . . 10 ((Σ^‘(𝑘𝐴𝐶)) = +∞ → +∞ = (Σ^‘(𝑘𝐴𝐶)))
4847adantl 481 . . . . . . . . 9 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → +∞ = (Σ^‘(𝑘𝐴𝐶)))
4922, 5sselid 3915 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ*)
5049, 13xadd0ge2 42770 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐶 ≤ (𝐵 +𝑒 𝐶))
513, 4, 5, 15, 50sge0lempt 43838 . . . . . . . . . 10 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
5251adantr 480 . . . . . . . . 9 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴𝐶)) ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
5348, 52eqbrtrd 5092 . . . . . . . 8 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → +∞ ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
5445, 53xrgepnfd 42760 . . . . . . 7 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = +∞)
5554eqcomd 2744 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → +∞ = (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
5639, 44, 553eqtrrd 2783 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
5756adantlr 711 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
58 simpl 482 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ))
59 simpr 484 . . . . . . 7 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞)
604, 8sge0repnf 43814 . . . . . . . 8 (𝜑 → ((Σ^‘(𝑘𝐴𝐶)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞))
6160adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → ((Σ^‘(𝑘𝐴𝐶)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞))
6259, 61mpbird 256 . . . . . 6 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
6362adantlr 711 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
644ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → 𝐴𝑉)
65 nfcv 2906 . . . . . . . . . . . . . 14 𝑘Σ^
66 nfmpt1 5178 . . . . . . . . . . . . . 14 𝑘(𝑘𝐴𝐵)
6765, 66nffv 6766 . . . . . . . . . . . . 13 𝑘^‘(𝑘𝐴𝐵))
68 nfcv 2906 . . . . . . . . . . . . 13 𝑘
6967, 68nfel 2920 . . . . . . . . . . . 12 𝑘^‘(𝑘𝐴𝐵)) ∈ ℝ
703, 69nfan 1903 . . . . . . . . . . 11 𝑘(𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
71 nfv 1918 . . . . . . . . . . 11 𝑘 𝑗𝐴
7270, 71nfan 1903 . . . . . . . . . 10 𝑘((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴)
73 nfcsb1v 3853 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐵
7473nfel1 2922 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐵 ∈ (0[,)+∞)
7572, 74nfim 1900 . . . . . . . . 9 𝑘(((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
76 eleq1w 2821 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
7776anbi2d 628 . . . . . . . . . 10 (𝑘 = 𝑗 → (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) ↔ ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴)))
78 csbeq1a 3842 . . . . . . . . . . 11 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
7978eleq1d 2823 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵 ∈ (0[,)+∞) ↔ 𝑗 / 𝑘𝐵 ∈ (0[,)+∞)))
8077, 79imbi12d 344 . . . . . . . . 9 (𝑘 = 𝑗 → ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,)+∞)) ↔ (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))))
814adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝐴𝑉)
8213adantlr 711 . . . . . . . . . 10 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
83 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
8470, 81, 82, 83sge0rernmpt 43850 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
8575, 80, 84chvarfv 2236 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
8685adantlr 711 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
87 nfmpt1 5178 . . . . . . . . . . . . . 14 𝑘(𝑘𝐴𝐶)
8865, 87nffv 6766 . . . . . . . . . . . . 13 𝑘^‘(𝑘𝐴𝐶))
8988, 68nfel 2920 . . . . . . . . . . . 12 𝑘^‘(𝑘𝐴𝐶)) ∈ ℝ
903, 89nfan 1903 . . . . . . . . . . 11 𝑘(𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
9190, 71nfan 1903 . . . . . . . . . 10 𝑘((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴)
92 nfcsb1v 3853 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐶
9392nfel1 2922 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐶 ∈ (0[,)+∞)
9491, 93nfim 1900 . . . . . . . . 9 𝑘(((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
9576anbi2d 628 . . . . . . . . . 10 (𝑘 = 𝑗 → (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑘𝐴) ↔ ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴)))
96 csbeq1a 3842 . . . . . . . . . . 11 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
9796eleq1d 2823 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐶 ∈ (0[,)+∞) ↔ 𝑗 / 𝑘𝐶 ∈ (0[,)+∞)))
9895, 97imbi12d 344 . . . . . . . . 9 (𝑘 = 𝑗 → ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ (0[,)+∞)) ↔ (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))))
994adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → 𝐴𝑉)
1005adantlr 711 . . . . . . . . . 10 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
101 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
10290, 99, 100, 101sge0rernmpt 43850 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ (0[,)+∞))
10394, 98, 102chvarfv 2236 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
104103adantllr 715 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
105 nfcv 2906 . . . . . . . . . 10 𝑗𝐵
106105, 73, 78cbvmpt 5181 . . . . . . . . 9 (𝑘𝐴𝐵) = (𝑗𝐴𝑗 / 𝑘𝐵)
107106fveq2i 6759 . . . . . . . 8 ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵))
108 simplr 765 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
109107, 108eqeltrrid 2844 . . . . . . 7 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) ∈ ℝ)
110 nfcv 2906 . . . . . . . . . 10 𝑗𝐶
111110, 92, 96cbvmpt 5181 . . . . . . . . 9 (𝑘𝐴𝐶) = (𝑗𝐴𝑗 / 𝑘𝐶)
112111fveq2i 6759 . . . . . . . 8 ^‘(𝑘𝐴𝐶)) = (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶))
113 simpr 484 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
114112, 113eqeltrrid 2844 . . . . . . 7 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)) ∈ ℝ)
11564, 86, 104, 109, 114sge0xaddlem2 43862 . . . . . 6 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑗𝐴 ↦ (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶))) = ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) +𝑒^‘(𝑗𝐴𝑗 / 𝑘𝐶))))
116 nfcv 2906 . . . . . . . . 9 𝑗(𝐵 +𝑒 𝐶)
117 nfcv 2906 . . . . . . . . . 10 𝑘 +𝑒
11873, 117, 92nfov 7285 . . . . . . . . 9 𝑘(𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶)
11978, 96oveq12d 7273 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐵 +𝑒 𝐶) = (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶))
120116, 118, 119cbvmpt 5181 . . . . . . . 8 (𝑘𝐴 ↦ (𝐵 +𝑒 𝐶)) = (𝑗𝐴 ↦ (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶))
121120fveq2i 6759 . . . . . . 7 ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = (Σ^‘(𝑗𝐴 ↦ (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶)))
122107, 112oveq12i 7267 . . . . . . 7 ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) +𝑒^‘(𝑗𝐴𝑗 / 𝑘𝐶)))
123121, 122eqeq12i 2756 . . . . . 6 ((Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) ↔ (Σ^‘(𝑗𝐴 ↦ (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶))) = ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) +𝑒^‘(𝑗𝐴𝑗 / 𝑘𝐶))))
124115, 123sylibr 233 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
12558, 63, 124syl2anc 583 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
12657, 125pm2.61dan 809 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
12731, 37, 126syl2anc 583 . 2 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
12830, 127pm2.61dan 809 1 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wnf 1787  wcel 2108  wne 2942  Vcvv 3422  csb 3828   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939  cle 10941   +𝑒 cxad 12775  [,)cico 13010  [,]cicc 13011  Σ^csumge0 43790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xadd 12778  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-sumge0 43791
This theorem is referenced by:  ovnsubaddlem1  43998  hspmbllem2  44055  ovolval5lem1  44080
  Copyright terms: Public domain W3C validator