| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fncpn | Structured version Visualization version GIF version | ||
| Description: The 𝓑C𝑛 object is a function. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| fncpn | ⊢ (𝑆 ⊆ ℂ → (𝓑C𝑛‘𝑆) Fn ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7420 | . . . 4 ⊢ (ℂ ↑pm 𝑆) ∈ V | |
| 2 | 1 | rabex 5294 | . . 3 ⊢ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)} ∈ V |
| 3 | eqid 2729 | . . 3 ⊢ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)}) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)}) | |
| 4 | 2, 3 | fnmpti 6661 | . 2 ⊢ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)}) Fn ℕ0 |
| 5 | cpnfval 25834 | . . 3 ⊢ (𝑆 ⊆ ℂ → (𝓑C𝑛‘𝑆) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)})) | |
| 6 | 5 | fneq1d 6611 | . 2 ⊢ (𝑆 ⊆ ℂ → ((𝓑C𝑛‘𝑆) Fn ℕ0 ↔ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)}) Fn ℕ0)) |
| 7 | 4, 6 | mpbiri 258 | 1 ⊢ (𝑆 ⊆ ℂ → (𝓑C𝑛‘𝑆) Fn ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {crab 3405 ⊆ wss 3914 ↦ cmpt 5188 dom cdm 5638 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 ↑pm cpm 8800 ℂcc 11066 ℕ0cn0 12442 –cn→ccncf 24769 D𝑛 cdvn 25765 𝓑C𝑛ccpn 25766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-n0 12443 df-cpn 25770 |
| This theorem is referenced by: cpncn 25838 cpnres 25839 plycpn 26197 aalioulem3 26242 |
| Copyright terms: Public domain | W3C validator |