![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elcpn | Structured version Visualization version GIF version |
Description: Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
elcpn | ⊢ ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛‘𝑆)‘𝑁) ↔ (𝐹 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹–cn→ℂ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpnfval 25988 | . . . . 5 ⊢ (𝑆 ⊆ ℂ → (𝓑C𝑛‘𝑆) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)})) | |
2 | 1 | fveq1d 6922 | . . . 4 ⊢ (𝑆 ⊆ ℂ → ((𝓑C𝑛‘𝑆)‘𝑁) = ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)})‘𝑁)) |
3 | fveq2 6920 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → ((𝑆 D𝑛 𝑓)‘𝑛) = ((𝑆 D𝑛 𝑓)‘𝑁)) | |
4 | 3 | eleq1d 2829 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ) ↔ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓–cn→ℂ))) |
5 | 4 | rabbidv 3451 | . . . . 5 ⊢ (𝑛 = 𝑁 → {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)} = {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓–cn→ℂ)}) |
6 | eqid 2740 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)}) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)}) | |
7 | ovex 7481 | . . . . . 6 ⊢ (ℂ ↑pm 𝑆) ∈ V | |
8 | 7 | rabex 5357 | . . . . 5 ⊢ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓–cn→ℂ)} ∈ V |
9 | 5, 6, 8 | fvmpt 7029 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)})‘𝑁) = {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓–cn→ℂ)}) |
10 | 2, 9 | sylan9eq 2800 | . . 3 ⊢ ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝓑C𝑛‘𝑆)‘𝑁) = {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓–cn→ℂ)}) |
11 | 10 | eleq2d 2830 | . 2 ⊢ ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛‘𝑆)‘𝑁) ↔ 𝐹 ∈ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓–cn→ℂ)})) |
12 | oveq2 7456 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑆 D𝑛 𝑓) = (𝑆 D𝑛 𝐹)) | |
13 | 12 | fveq1d 6922 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝑆 D𝑛 𝑓)‘𝑁) = ((𝑆 D𝑛 𝐹)‘𝑁)) |
14 | dmeq 5928 | . . . . 5 ⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) | |
15 | 14 | oveq1d 7463 | . . . 4 ⊢ (𝑓 = 𝐹 → (dom 𝑓–cn→ℂ) = (dom 𝐹–cn→ℂ)) |
16 | 13, 15 | eleq12d 2838 | . . 3 ⊢ (𝑓 = 𝐹 → (((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓–cn→ℂ) ↔ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹–cn→ℂ))) |
17 | 16 | elrab 3708 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓–cn→ℂ)} ↔ (𝐹 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹–cn→ℂ))) |
18 | 11, 17 | bitrdi 287 | 1 ⊢ ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛‘𝑆)‘𝑁) ↔ (𝐹 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹–cn→ℂ)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 ⊆ wss 3976 ↦ cmpt 5249 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 ↑pm cpm 8885 ℂcc 11182 ℕ0cn0 12553 –cn→ccncf 24921 D𝑛 cdvn 25919 𝓑C𝑛ccpn 25920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-n0 12554 df-cpn 25924 |
This theorem is referenced by: cpnord 25991 cpncn 25992 cpnres 25993 c1lip2 26057 plycpn 26349 |
Copyright terms: Public domain | W3C validator |