MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcpn Structured version   Visualization version   GIF version

Theorem elcpn 25863
Description: Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
elcpn ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛𝑆)‘𝑁) ↔ (𝐹 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ))))

Proof of Theorem elcpn
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpnfval 25861 . . . . 5 (𝑆 ⊆ ℂ → (𝓑C𝑛𝑆) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}))
21fveq1d 6824 . . . 4 (𝑆 ⊆ ℂ → ((𝓑C𝑛𝑆)‘𝑁) = ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)})‘𝑁))
3 fveq2 6822 . . . . . . 7 (𝑛 = 𝑁 → ((𝑆 D𝑛 𝑓)‘𝑛) = ((𝑆 D𝑛 𝑓)‘𝑁))
43eleq1d 2816 . . . . . 6 (𝑛 = 𝑁 → (((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ) ↔ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ)))
54rabbidv 3402 . . . . 5 (𝑛 = 𝑁 → {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)} = {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ)})
6 eqid 2731 . . . . 5 (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)})
7 ovex 7379 . . . . . 6 (ℂ ↑pm 𝑆) ∈ V
87rabex 5275 . . . . 5 {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ)} ∈ V
95, 6, 8fvmpt 6929 . . . 4 (𝑁 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)})‘𝑁) = {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ)})
102, 9sylan9eq 2786 . . 3 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑁) = {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ)})
1110eleq2d 2817 . 2 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛𝑆)‘𝑁) ↔ 𝐹 ∈ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ)}))
12 oveq2 7354 . . . . 5 (𝑓 = 𝐹 → (𝑆 D𝑛 𝑓) = (𝑆 D𝑛 𝐹))
1312fveq1d 6824 . . . 4 (𝑓 = 𝐹 → ((𝑆 D𝑛 𝑓)‘𝑁) = ((𝑆 D𝑛 𝐹)‘𝑁))
14 dmeq 5842 . . . . 5 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
1514oveq1d 7361 . . . 4 (𝑓 = 𝐹 → (dom 𝑓cn→ℂ) = (dom 𝐹cn→ℂ))
1613, 15eleq12d 2825 . . 3 (𝑓 = 𝐹 → (((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ) ↔ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ)))
1716elrab 3642 . 2 (𝐹 ∈ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ)} ↔ (𝐹 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ)))
1811, 17bitrdi 287 1 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛𝑆)‘𝑁) ↔ (𝐹 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  wss 3897  cmpt 5170  dom cdm 5614  cfv 6481  (class class class)co 7346  pm cpm 8751  cc 11004  0cn0 12381  cnccncf 24796   D𝑛 cdvn 25792  𝓑C𝑛ccpn 25793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-1cn 11064  ax-addcl 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-nn 12126  df-n0 12382  df-cpn 25797
This theorem is referenced by:  cpnord  25864  cpncn  25865  cpnres  25866  c1lip2  25930  plycpn  26224
  Copyright terms: Public domain W3C validator