MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcpn Structured version   Visualization version   GIF version

Theorem elcpn 25893
Description: Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
elcpn ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛𝑆)‘𝑁) ↔ (𝐹 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ))))

Proof of Theorem elcpn
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpnfval 25891 . . . . 5 (𝑆 ⊆ ℂ → (𝓑C𝑛𝑆) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}))
21fveq1d 6883 . . . 4 (𝑆 ⊆ ℂ → ((𝓑C𝑛𝑆)‘𝑁) = ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)})‘𝑁))
3 fveq2 6881 . . . . . . 7 (𝑛 = 𝑁 → ((𝑆 D𝑛 𝑓)‘𝑛) = ((𝑆 D𝑛 𝑓)‘𝑁))
43eleq1d 2820 . . . . . 6 (𝑛 = 𝑁 → (((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ) ↔ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ)))
54rabbidv 3428 . . . . 5 (𝑛 = 𝑁 → {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)} = {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ)})
6 eqid 2736 . . . . 5 (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)})
7 ovex 7443 . . . . . 6 (ℂ ↑pm 𝑆) ∈ V
87rabex 5314 . . . . 5 {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ)} ∈ V
95, 6, 8fvmpt 6991 . . . 4 (𝑁 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)})‘𝑁) = {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ)})
102, 9sylan9eq 2791 . . 3 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑁) = {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ)})
1110eleq2d 2821 . 2 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛𝑆)‘𝑁) ↔ 𝐹 ∈ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ)}))
12 oveq2 7418 . . . . 5 (𝑓 = 𝐹 → (𝑆 D𝑛 𝑓) = (𝑆 D𝑛 𝐹))
1312fveq1d 6883 . . . 4 (𝑓 = 𝐹 → ((𝑆 D𝑛 𝑓)‘𝑁) = ((𝑆 D𝑛 𝐹)‘𝑁))
14 dmeq 5888 . . . . 5 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
1514oveq1d 7425 . . . 4 (𝑓 = 𝐹 → (dom 𝑓cn→ℂ) = (dom 𝐹cn→ℂ))
1613, 15eleq12d 2829 . . 3 (𝑓 = 𝐹 → (((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ) ↔ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ)))
1716elrab 3676 . 2 (𝐹 ∈ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ)} ↔ (𝐹 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ)))
1811, 17bitrdi 287 1 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛𝑆)‘𝑁) ↔ (𝐹 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3420  wss 3931  cmpt 5206  dom cdm 5659  cfv 6536  (class class class)co 7410  pm cpm 8846  cc 11132  0cn0 12506  cnccncf 24825   D𝑛 cdvn 25822  𝓑C𝑛ccpn 25823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-1cn 11192  ax-addcl 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-nn 12246  df-n0 12507  df-cpn 25827
This theorem is referenced by:  cpnord  25894  cpncn  25895  cpnres  25896  c1lip2  25960  plycpn  26254
  Copyright terms: Public domain W3C validator