MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcpn Structured version   Visualization version   GIF version

Theorem elcpn 25098
Description: Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
elcpn ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛𝑆)‘𝑁) ↔ (𝐹 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ))))

Proof of Theorem elcpn
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpnfval 25096 . . . . 5 (𝑆 ⊆ ℂ → (𝓑C𝑛𝑆) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}))
21fveq1d 6776 . . . 4 (𝑆 ⊆ ℂ → ((𝓑C𝑛𝑆)‘𝑁) = ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)})‘𝑁))
3 fveq2 6774 . . . . . . 7 (𝑛 = 𝑁 → ((𝑆 D𝑛 𝑓)‘𝑛) = ((𝑆 D𝑛 𝑓)‘𝑁))
43eleq1d 2823 . . . . . 6 (𝑛 = 𝑁 → (((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ) ↔ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ)))
54rabbidv 3414 . . . . 5 (𝑛 = 𝑁 → {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)} = {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ)})
6 eqid 2738 . . . . 5 (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)})
7 ovex 7308 . . . . . 6 (ℂ ↑pm 𝑆) ∈ V
87rabex 5256 . . . . 5 {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ)} ∈ V
95, 6, 8fvmpt 6875 . . . 4 (𝑁 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)})‘𝑁) = {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ)})
102, 9sylan9eq 2798 . . 3 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑁) = {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ)})
1110eleq2d 2824 . 2 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛𝑆)‘𝑁) ↔ 𝐹 ∈ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ)}))
12 oveq2 7283 . . . . 5 (𝑓 = 𝐹 → (𝑆 D𝑛 𝑓) = (𝑆 D𝑛 𝐹))
1312fveq1d 6776 . . . 4 (𝑓 = 𝐹 → ((𝑆 D𝑛 𝑓)‘𝑁) = ((𝑆 D𝑛 𝐹)‘𝑁))
14 dmeq 5812 . . . . 5 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
1514oveq1d 7290 . . . 4 (𝑓 = 𝐹 → (dom 𝑓cn→ℂ) = (dom 𝐹cn→ℂ))
1613, 15eleq12d 2833 . . 3 (𝑓 = 𝐹 → (((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ) ↔ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ)))
1716elrab 3624 . 2 (𝐹 ∈ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓cn→ℂ)} ↔ (𝐹 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ)))
1811, 17bitrdi 287 1 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛𝑆)‘𝑁) ↔ (𝐹 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {crab 3068  wss 3887  cmpt 5157  dom cdm 5589  cfv 6433  (class class class)co 7275  pm cpm 8616  cc 10869  0cn0 12233  cnccncf 24039   D𝑛 cdvn 25028  𝓑C𝑛ccpn 25029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-1cn 10929  ax-addcl 10931
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-nn 11974  df-n0 12234  df-cpn 25033
This theorem is referenced by:  cpnord  25099  cpncn  25100  cpnres  25101  c1lip2  25162  plycpn  25449
  Copyright terms: Public domain W3C validator