Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elcpn | Structured version Visualization version GIF version |
Description: Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
elcpn | ⊢ ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛‘𝑆)‘𝑁) ↔ (𝐹 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹–cn→ℂ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpnfval 25001 | . . . . 5 ⊢ (𝑆 ⊆ ℂ → (𝓑C𝑛‘𝑆) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)})) | |
2 | 1 | fveq1d 6758 | . . . 4 ⊢ (𝑆 ⊆ ℂ → ((𝓑C𝑛‘𝑆)‘𝑁) = ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)})‘𝑁)) |
3 | fveq2 6756 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → ((𝑆 D𝑛 𝑓)‘𝑛) = ((𝑆 D𝑛 𝑓)‘𝑁)) | |
4 | 3 | eleq1d 2823 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ) ↔ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓–cn→ℂ))) |
5 | 4 | rabbidv 3404 | . . . . 5 ⊢ (𝑛 = 𝑁 → {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)} = {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓–cn→ℂ)}) |
6 | eqid 2738 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)}) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)}) | |
7 | ovex 7288 | . . . . . 6 ⊢ (ℂ ↑pm 𝑆) ∈ V | |
8 | 7 | rabex 5251 | . . . . 5 ⊢ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓–cn→ℂ)} ∈ V |
9 | 5, 6, 8 | fvmpt 6857 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)})‘𝑁) = {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓–cn→ℂ)}) |
10 | 2, 9 | sylan9eq 2799 | . . 3 ⊢ ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝓑C𝑛‘𝑆)‘𝑁) = {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓–cn→ℂ)}) |
11 | 10 | eleq2d 2824 | . 2 ⊢ ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛‘𝑆)‘𝑁) ↔ 𝐹 ∈ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓–cn→ℂ)})) |
12 | oveq2 7263 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑆 D𝑛 𝑓) = (𝑆 D𝑛 𝐹)) | |
13 | 12 | fveq1d 6758 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝑆 D𝑛 𝑓)‘𝑁) = ((𝑆 D𝑛 𝐹)‘𝑁)) |
14 | dmeq 5801 | . . . . 5 ⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) | |
15 | 14 | oveq1d 7270 | . . . 4 ⊢ (𝑓 = 𝐹 → (dom 𝑓–cn→ℂ) = (dom 𝐹–cn→ℂ)) |
16 | 13, 15 | eleq12d 2833 | . . 3 ⊢ (𝑓 = 𝐹 → (((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓–cn→ℂ) ↔ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹–cn→ℂ))) |
17 | 16 | elrab 3617 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑁) ∈ (dom 𝑓–cn→ℂ)} ↔ (𝐹 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹–cn→ℂ))) |
18 | 11, 17 | bitrdi 286 | 1 ⊢ ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛‘𝑆)‘𝑁) ↔ (𝐹 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹–cn→ℂ)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 ⊆ wss 3883 ↦ cmpt 5153 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 ↑pm cpm 8574 ℂcc 10800 ℕ0cn0 12163 –cn→ccncf 23945 D𝑛 cdvn 24933 𝓑C𝑛ccpn 24934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-n0 12164 df-cpn 24938 |
This theorem is referenced by: cpnord 25004 cpncn 25005 cpnres 25006 c1lip2 25067 plycpn 25354 |
Copyright terms: Public domain | W3C validator |