| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cpnfval | Structured version Visualization version GIF version | ||
| Description: Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| cpnfval | ⊢ (𝑆 ⊆ ℂ → (𝓑C𝑛‘𝑆) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11149 | . . 3 ⊢ ℂ ∈ V | |
| 2 | 1 | elpw2 5289 | . 2 ⊢ (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ) |
| 3 | oveq2 7395 | . . . . 5 ⊢ (𝑠 = 𝑆 → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆)) | |
| 4 | oveq1 7394 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑠 D𝑛 𝑓) = (𝑆 D𝑛 𝑓)) | |
| 5 | 4 | fveq1d 6860 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ((𝑠 D𝑛 𝑓)‘𝑛) = ((𝑆 D𝑛 𝑓)‘𝑛)) |
| 6 | 5 | eleq1d 2813 | . . . . 5 ⊢ (𝑠 = 𝑆 → (((𝑠 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ) ↔ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ))) |
| 7 | 3, 6 | rabeqbidv 3424 | . . . 4 ⊢ (𝑠 = 𝑆 → {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ((𝑠 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)} = {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)}) |
| 8 | 7 | mpteq2dv 5201 | . . 3 ⊢ (𝑠 = 𝑆 → (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ((𝑠 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)}) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)})) |
| 9 | df-cpn 25770 | . . 3 ⊢ 𝓑C𝑛 = (𝑠 ∈ 𝒫 ℂ ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ((𝑠 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)})) | |
| 10 | nn0ex 12448 | . . . 4 ⊢ ℕ0 ∈ V | |
| 11 | 10 | mptex 7197 | . . 3 ⊢ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)}) ∈ V |
| 12 | 8, 9, 11 | fvmpt 6968 | . 2 ⊢ (𝑆 ∈ 𝒫 ℂ → (𝓑C𝑛‘𝑆) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)})) |
| 13 | 2, 12 | sylbir 235 | 1 ⊢ (𝑆 ⊆ ℂ → (𝓑C𝑛‘𝑆) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 ⊆ wss 3914 𝒫 cpw 4563 ↦ cmpt 5188 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 ↑pm cpm 8800 ℂcc 11066 ℕ0cn0 12442 –cn→ccncf 24769 D𝑛 cdvn 25765 𝓑C𝑛ccpn 25766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-n0 12443 df-cpn 25770 |
| This theorem is referenced by: fncpn 25835 elcpn 25836 |
| Copyright terms: Public domain | W3C validator |