MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpnfval Structured version   Visualization version   GIF version

Theorem cpnfval 25834
Description: Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
cpnfval (𝑆 ⊆ ℂ → (𝓑C𝑛𝑆) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}))
Distinct variable group:   𝑓,𝑛,𝑆

Proof of Theorem cpnfval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 cnex 11149 . . 3 ℂ ∈ V
21elpw2 5289 . 2 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
3 oveq2 7395 . . . . 5 (𝑠 = 𝑆 → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
4 oveq1 7394 . . . . . . 7 (𝑠 = 𝑆 → (𝑠 D𝑛 𝑓) = (𝑆 D𝑛 𝑓))
54fveq1d 6860 . . . . . 6 (𝑠 = 𝑆 → ((𝑠 D𝑛 𝑓)‘𝑛) = ((𝑆 D𝑛 𝑓)‘𝑛))
65eleq1d 2813 . . . . 5 (𝑠 = 𝑆 → (((𝑠 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ) ↔ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)))
73, 6rabeqbidv 3424 . . . 4 (𝑠 = 𝑆 → {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ((𝑠 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)} = {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)})
87mpteq2dv 5201 . . 3 (𝑠 = 𝑆 → (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ((𝑠 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}))
9 df-cpn 25770 . . 3 𝓑C𝑛 = (𝑠 ∈ 𝒫 ℂ ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ((𝑠 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}))
10 nn0ex 12448 . . . 4 0 ∈ V
1110mptex 7197 . . 3 (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}) ∈ V
128, 9, 11fvmpt 6968 . 2 (𝑆 ∈ 𝒫 ℂ → (𝓑C𝑛𝑆) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}))
132, 12sylbir 235 1 (𝑆 ⊆ ℂ → (𝓑C𝑛𝑆) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3405  wss 3914  𝒫 cpw 4563  cmpt 5188  dom cdm 5638  cfv 6511  (class class class)co 7387  pm cpm 8800  cc 11066  0cn0 12442  cnccncf 24769   D𝑛 cdvn 25765  𝓑C𝑛ccpn 25766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-nn 12187  df-n0 12443  df-cpn 25770
This theorem is referenced by:  fncpn  25835  elcpn  25836
  Copyright terms: Public domain W3C validator