MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaddcld Structured version   Visualization version   GIF version

Theorem nnaddcld 12302
Description: Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
nnge1d.1 (𝜑𝐴 ∈ ℕ)
nnmulcld.2 (𝜑𝐵 ∈ ℕ)
Assertion
Ref Expression
nnaddcld (𝜑 → (𝐴 + 𝐵) ∈ ℕ)

Proof of Theorem nnaddcld
StepHypRef Expression
1 nnge1d.1 . 2 (𝜑𝐴 ∈ ℕ)
2 nnmulcld.2 . 2 (𝜑𝐵 ∈ ℕ)
3 nnaddcl 12273 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ)
41, 2, 3syl2anc 582 1 (𝜑 → (𝐴 + 𝐵) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  (class class class)co 7426   + caddc 11149  cn 12250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746  ax-1cn 11204  ax-addcl 11206  ax-addass 11211
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-nn 12251
This theorem is referenced by:  relexpaddnn  15038  pythagtriplem4  16795  pythagtriplem6  16797  pythagtriplem7  16798  pythagtriplem11  16801  pythagtriplem13  16803  pythagtriplem15  16805  vdwlem1  16957  vdwlem3  16959  vdwlem5  16961  vdwlem6  16962  vdwlem8  16964  vdwlem9  16965  vdwlem10  16966  vdwlem11  16967  prmgaplem2  17026  prmgaplcmlem2  17028  gsumsgrpccat  18799  aaliou3lem8  26300  lgsqrlem2  27300  lgseisenlem2  27329  2sqmod  27389  mdetlap  33466  ballotlem5  34152  faclimlem1  35370  faclimlem2  35371  faclim2  35375  lcmineqlem22  41553  nnadddir  41876  zaddcom  42038  flt4lem6  42113  fmtnoprmfac2  46936  gbowpos  47128
  Copyright terms: Public domain W3C validator