| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnaddcld | Structured version Visualization version GIF version | ||
| Description: Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| nnmulcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
| Ref | Expression |
|---|---|
| nnaddcld | ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | nnmulcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
| 3 | nnaddcl 12148 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 (class class class)co 7346 + caddc 11009 ℕcn 12125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-1cn 11064 ax-addcl 11066 ax-addass 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12126 |
| This theorem is referenced by: relexpaddnn 14958 pythagtriplem4 16731 pythagtriplem6 16733 pythagtriplem7 16734 pythagtriplem11 16737 pythagtriplem13 16739 pythagtriplem15 16741 vdwlem1 16893 vdwlem3 16895 vdwlem5 16897 vdwlem6 16898 vdwlem8 16900 vdwlem9 16901 vdwlem10 16902 vdwlem11 16903 prmgaplem2 16962 prmgaplcmlem2 16964 gsumsgrpccat 18748 aaliou3lem8 26280 lgsqrlem2 27285 lgseisenlem2 27314 2sqmod 27374 mdetlap 33845 ballotlem5 34513 faclimlem1 35787 faclimlem2 35788 faclim2 35792 lcmineqlem22 42153 nnadddir 42373 zaddcom 42567 fimgmcyc 42637 flt4lem6 42761 fmtnoprmfac2 47677 gbowpos 47869 |
| Copyright terms: Public domain | W3C validator |