MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaddcld Structured version   Visualization version   GIF version

Theorem nnaddcld 12297
Description: Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
nnge1d.1 (𝜑𝐴 ∈ ℕ)
nnmulcld.2 (𝜑𝐵 ∈ ℕ)
Assertion
Ref Expression
nnaddcld (𝜑 → (𝐴 + 𝐵) ∈ ℕ)

Proof of Theorem nnaddcld
StepHypRef Expression
1 nnge1d.1 . 2 (𝜑𝐴 ∈ ℕ)
2 nnmulcld.2 . 2 (𝜑𝐵 ∈ ℕ)
3 nnaddcl 12268 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ)
41, 2, 3syl2anc 582 1 (𝜑 → (𝐴 + 𝐵) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  (class class class)co 7419   + caddc 11143  cn 12245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741  ax-1cn 11198  ax-addcl 11200  ax-addass 11205
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-nn 12246
This theorem is referenced by:  relexpaddnn  15034  pythagtriplem4  16791  pythagtriplem6  16793  pythagtriplem7  16794  pythagtriplem11  16797  pythagtriplem13  16799  pythagtriplem15  16801  vdwlem1  16953  vdwlem3  16955  vdwlem5  16957  vdwlem6  16958  vdwlem8  16960  vdwlem9  16961  vdwlem10  16962  vdwlem11  16963  prmgaplem2  17022  prmgaplcmlem2  17024  gsumsgrpccat  18800  aaliou3lem8  26325  lgsqrlem2  27325  lgseisenlem2  27354  2sqmod  27414  mdetlap  33564  ballotlem5  34250  faclimlem1  35468  faclimlem2  35469  faclim2  35473  lcmineqlem22  41653  nnadddir  41980  zaddcom  42142  flt4lem6  42217  fmtnoprmfac2  47044  gbowpos  47236
  Copyright terms: Public domain W3C validator