| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringlz | Structured version Visualization version GIF version | ||
| Description: The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) (Proof shortened by AV, 30-Mar-2025.) |
| Ref | Expression |
|---|---|
| ringz.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringz.t | ⊢ · = (.r‘𝑅) |
| ringz.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| ringlz | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringrng 20250 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Rng) | |
| 2 | ringz.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | ringz.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 4 | ringz.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 5 | 2, 3, 4 | rnglz 20130 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) |
| 6 | 1, 5 | sylan 580 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 .rcmulr 17277 0gc0g 17458 Rngcrng 20117 Ringcrg 20198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 |
| This theorem is referenced by: ringlzd 20260 ringsrg 20262 ring1eq0 20263 ringnegl 20267 mulgass2 20274 gsumdixp 20284 dvdsr01 20336 0unit 20361 irredn0 20388 zrrnghm 20501 cntzsubr 20571 domneq0 20673 drngmul0orOLD 20726 isdrngd 20730 cntzsdrg 20767 isabvd 20777 dvdschrmulg 21494 frlmphllem 21745 psrlidm 21927 mplsubrglem 21969 mplmonmul 21999 evlslem4 22039 evlslem3 22043 evlslem6 22044 coe1tmmul 22219 cply1mul 22239 evls1fpws 22312 mamulid 22384 dmatmul 22440 scmatscm 22456 1mavmul 22491 mdetdiaglem 22541 mdetr0 22548 mdegmullem 26040 coe1mul3 26061 fta1glem1 26130 rmfsupp2 33238 elrspunidl 33448 elrspunsn 33449 drngidl 33453 fedgmullem1 33674 lflsc0N 39106 hdmapinvlem3 41944 hdmapinvlem4 41945 fldhmf1 42108 evlsbagval 42556 mnringmulrcld 44219 zlidlring 48176 rmsupp0 48310 ply1mulgsumlem2 48330 |
| Copyright terms: Public domain | W3C validator |