Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringlz Structured version   Visualization version   GIF version

Theorem ringlz 19316
 Description: The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.)
Hypotheses
Ref Expression
rngz.b 𝐵 = (Base‘𝑅)
rngz.t · = (.r𝑅)
rngz.z 0 = (0g𝑅)
Assertion
Ref Expression
ringlz ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )

Proof of Theorem ringlz
StepHypRef Expression
1 ringgrp 19281 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2 rngz.b . . . . . . 7 𝐵 = (Base‘𝑅)
3 rngz.z . . . . . . 7 0 = (0g𝑅)
42, 3grpidcl 18110 . . . . . 6 (𝑅 ∈ Grp → 0𝐵)
5 eqid 2821 . . . . . . 7 (+g𝑅) = (+g𝑅)
62, 5, 3grplid 18112 . . . . . 6 ((𝑅 ∈ Grp ∧ 0𝐵) → ( 0 (+g𝑅) 0 ) = 0 )
71, 4, 6syl2anc2 588 . . . . 5 (𝑅 ∈ Ring → ( 0 (+g𝑅) 0 ) = 0 )
87adantr 484 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 (+g𝑅) 0 ) = 0 )
98oveq1d 7145 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 0 (+g𝑅) 0 ) · 𝑋) = ( 0 · 𝑋))
101, 4syl 17 . . . . . 6 (𝑅 ∈ Ring → 0𝐵)
1110adantr 484 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 0𝐵)
12 simpr 488 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋𝐵)
1311, 11, 123jca 1125 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0𝐵0𝐵𝑋𝐵))
14 rngz.t . . . . 5 · = (.r𝑅)
152, 5, 14ringdir 19296 . . . 4 ((𝑅 ∈ Ring ∧ ( 0𝐵0𝐵𝑋𝐵)) → (( 0 (+g𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)))
1613, 15syldan 594 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 0 (+g𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)))
171adantr 484 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Grp)
18 simpl 486 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Ring)
192, 14ringcl 19290 . . . . 5 ((𝑅 ∈ Ring ∧ 0𝐵𝑋𝐵) → ( 0 · 𝑋) ∈ 𝐵)
2018, 11, 12, 19syl3anc 1368 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 · 𝑋) ∈ 𝐵)
212, 5, 3grprid 18113 . . . . 5 ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → (( 0 · 𝑋)(+g𝑅) 0 ) = ( 0 · 𝑋))
2221eqcomd 2827 . . . 4 ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g𝑅) 0 ))
2317, 20, 22syl2anc 587 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g𝑅) 0 ))
249, 16, 233eqtr3d 2864 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ))
252, 5grplcan 18140 . . 3 ((𝑅 ∈ Grp ∧ (( 0 · 𝑋) ∈ 𝐵0𝐵 ∧ ( 0 · 𝑋) ∈ 𝐵)) → ((( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 ))
2617, 20, 11, 20, 25syl13anc 1369 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 ))
2724, 26mpbid 235 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ‘cfv 6328  (class class class)co 7130  Basecbs 16462  +gcplusg 16544  .rcmulr 16545  0gc0g 16692  Grpcgrp 18082  Ringcrg 19276 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-plusg 16557  df-0g 16694  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-grp 18085  df-minusg 18086  df-mgp 19219  df-ring 19278 This theorem is referenced by:  ringsrg  19318  ring1eq0  19319  ringnegl  19323  mulgass2  19330  gsumdixp  19338  dvdsr01  19384  0unit  19409  irredn0  19432  drngmul0or  19499  cntzsubr  19544  cntzsdrg  19557  isabvd  19567  domneq0  20046  psrlidm  20159  mplsubrglem  20195  mplmonmul  20221  evlslem4  20264  evlslem3  20269  evlslem6  20270  coe1tmmul  20421  cply1mul  20438  frlmphllem  20900  mamulid  21026  dmatmul  21082  scmatscm  21098  1mavmul  21133  mdetdiaglem  21183  mdetr0  21190  mdegmullem  24658  coe1mul3  24679  fta1glem1  24745  dvdschrmulg  30866  rmfsupp2  30874  fedgmullem1  31036  lflsc0N  36261  hdmapinvlem3  39098  hdmapinvlem4  39099  mnringmulrcld  40747  zrrnghm  44360  zlidlring  44371  rmsupp0  44588  ply1mulgsumlem2  44613
 Copyright terms: Public domain W3C validator