Step | Hyp | Ref
| Expression |
1 | | rhmrcl1 20247 |
. . . . . 6
β’ (πΉ β (π
RingHom π) β π
β Ring) |
2 | | eqid 2732 |
. . . . . . 7
β’
(Unitβπ
) =
(Unitβπ
) |
3 | | eqid 2732 |
. . . . . . 7
β’
(invrβπ
) = (invrβπ
) |
4 | | eqid 2732 |
. . . . . . 7
β’
(.rβπ
) = (.rβπ
) |
5 | | eqid 2732 |
. . . . . . 7
β’
(1rβπ
) = (1rβπ
) |
6 | 2, 3, 4, 5 | unitlinv 20199 |
. . . . . 6
β’ ((π
β Ring β§ π΄ β (Unitβπ
)) β
(((invrβπ
)βπ΄)(.rβπ
)π΄) = (1rβπ
)) |
7 | 1, 6 | sylan 580 |
. . . . 5
β’ ((πΉ β (π
RingHom π) β§ π΄ β (Unitβπ
)) β (((invrβπ
)βπ΄)(.rβπ
)π΄) = (1rβπ
)) |
8 | 7 | fveq2d 6892 |
. . . 4
β’ ((πΉ β (π
RingHom π) β§ π΄ β (Unitβπ
)) β (πΉβ(((invrβπ
)βπ΄)(.rβπ
)π΄)) = (πΉβ(1rβπ
))) |
9 | | simpl 483 |
. . . . 5
β’ ((πΉ β (π
RingHom π) β§ π΄ β (Unitβπ
)) β πΉ β (π
RingHom π)) |
10 | | eqid 2732 |
. . . . . . 7
β’
(Baseβπ
) =
(Baseβπ
) |
11 | 10, 2 | unitss 20182 |
. . . . . 6
β’
(Unitβπ
)
β (Baseβπ
) |
12 | 2, 3 | unitinvcl 20196 |
. . . . . . 7
β’ ((π
β Ring β§ π΄ β (Unitβπ
)) β
((invrβπ
)βπ΄) β (Unitβπ
)) |
13 | 1, 12 | sylan 580 |
. . . . . 6
β’ ((πΉ β (π
RingHom π) β§ π΄ β (Unitβπ
)) β ((invrβπ
)βπ΄) β (Unitβπ
)) |
14 | 11, 13 | sselid 3979 |
. . . . 5
β’ ((πΉ β (π
RingHom π) β§ π΄ β (Unitβπ
)) β ((invrβπ
)βπ΄) β (Baseβπ
)) |
15 | | simpr 485 |
. . . . . 6
β’ ((πΉ β (π
RingHom π) β§ π΄ β (Unitβπ
)) β π΄ β (Unitβπ
)) |
16 | 11, 15 | sselid 3979 |
. . . . 5
β’ ((πΉ β (π
RingHom π) β§ π΄ β (Unitβπ
)) β π΄ β (Baseβπ
)) |
17 | | eqid 2732 |
. . . . . 6
β’
(.rβπ) = (.rβπ) |
18 | 10, 4, 17 | rhmmul 20256 |
. . . . 5
β’ ((πΉ β (π
RingHom π) β§ ((invrβπ
)βπ΄) β (Baseβπ
) β§ π΄ β (Baseβπ
)) β (πΉβ(((invrβπ
)βπ΄)(.rβπ
)π΄)) = ((πΉβ((invrβπ
)βπ΄))(.rβπ)(πΉβπ΄))) |
19 | 9, 14, 16, 18 | syl3anc 1371 |
. . . 4
β’ ((πΉ β (π
RingHom π) β§ π΄ β (Unitβπ
)) β (πΉβ(((invrβπ
)βπ΄)(.rβπ
)π΄)) = ((πΉβ((invrβπ
)βπ΄))(.rβπ)(πΉβπ΄))) |
20 | | eqid 2732 |
. . . . . 6
β’
(1rβπ) = (1rβπ) |
21 | 5, 20 | rhm1 20259 |
. . . . 5
β’ (πΉ β (π
RingHom π) β (πΉβ(1rβπ
)) = (1rβπ)) |
22 | 21 | adantr 481 |
. . . 4
β’ ((πΉ β (π
RingHom π) β§ π΄ β (Unitβπ
)) β (πΉβ(1rβπ
)) = (1rβπ)) |
23 | 8, 19, 22 | 3eqtr3d 2780 |
. . 3
β’ ((πΉ β (π
RingHom π) β§ π΄ β (Unitβπ
)) β ((πΉβ((invrβπ
)βπ΄))(.rβπ)(πΉβπ΄)) = (1rβπ)) |
24 | | rhmrcl2 20248 |
. . . . 5
β’ (πΉ β (π
RingHom π) β π β Ring) |
25 | 24 | adantr 481 |
. . . 4
β’ ((πΉ β (π
RingHom π) β§ π΄ β (Unitβπ
)) β π β Ring) |
26 | | elrhmunit 20281 |
. . . 4
β’ ((πΉ β (π
RingHom π) β§ π΄ β (Unitβπ
)) β (πΉβπ΄) β (Unitβπ)) |
27 | | eqid 2732 |
. . . . 5
β’
(Unitβπ) =
(Unitβπ) |
28 | | eqid 2732 |
. . . . 5
β’
(invrβπ) = (invrβπ) |
29 | 27, 28, 17, 20 | unitlinv 20199 |
. . . 4
β’ ((π β Ring β§ (πΉβπ΄) β (Unitβπ)) β (((invrβπ)β(πΉβπ΄))(.rβπ)(πΉβπ΄)) = (1rβπ)) |
30 | 25, 26, 29 | syl2anc 584 |
. . 3
β’ ((πΉ β (π
RingHom π) β§ π΄ β (Unitβπ
)) β (((invrβπ)β(πΉβπ΄))(.rβπ)(πΉβπ΄)) = (1rβπ)) |
31 | 23, 30 | eqtr4d 2775 |
. 2
β’ ((πΉ β (π
RingHom π) β§ π΄ β (Unitβπ
)) β ((πΉβ((invrβπ
)βπ΄))(.rβπ)(πΉβπ΄)) = (((invrβπ)β(πΉβπ΄))(.rβπ)(πΉβπ΄))) |
32 | | eqid 2732 |
. . . . . 6
β’
((mulGrpβπ)
βΎs (Unitβπ)) = ((mulGrpβπ) βΎs (Unitβπ)) |
33 | 27, 32 | unitgrp 20189 |
. . . . 5
β’ (π β Ring β
((mulGrpβπ)
βΎs (Unitβπ)) β Grp) |
34 | 24, 33 | syl 17 |
. . . 4
β’ (πΉ β (π
RingHom π) β ((mulGrpβπ) βΎs (Unitβπ)) β Grp) |
35 | 34 | adantr 481 |
. . 3
β’ ((πΉ β (π
RingHom π) β§ π΄ β (Unitβπ
)) β ((mulGrpβπ) βΎs (Unitβπ)) β Grp) |
36 | | elrhmunit 20281 |
. . . 4
β’ ((πΉ β (π
RingHom π) β§ ((invrβπ
)βπ΄) β (Unitβπ
)) β (πΉβ((invrβπ
)βπ΄)) β (Unitβπ)) |
37 | 13, 36 | syldan 591 |
. . 3
β’ ((πΉ β (π
RingHom π) β§ π΄ β (Unitβπ
)) β (πΉβ((invrβπ
)βπ΄)) β (Unitβπ)) |
38 | 27, 28 | unitinvcl 20196 |
. . . 4
β’ ((π β Ring β§ (πΉβπ΄) β (Unitβπ)) β ((invrβπ)β(πΉβπ΄)) β (Unitβπ)) |
39 | 25, 26, 38 | syl2anc 584 |
. . 3
β’ ((πΉ β (π
RingHom π) β§ π΄ β (Unitβπ
)) β ((invrβπ)β(πΉβπ΄)) β (Unitβπ)) |
40 | 27, 32 | unitgrpbas 20188 |
. . . 4
β’
(Unitβπ) =
(Baseβ((mulGrpβπ) βΎs (Unitβπ))) |
41 | | fvex 6901 |
. . . . 5
β’
(Unitβπ)
β V |
42 | | eqid 2732 |
. . . . . . 7
β’
(mulGrpβπ) =
(mulGrpβπ) |
43 | 42, 17 | mgpplusg 19985 |
. . . . . 6
β’
(.rβπ) = (+gβ(mulGrpβπ)) |
44 | 32, 43 | ressplusg 17231 |
. . . . 5
β’
((Unitβπ)
β V β (.rβπ) =
(+gβ((mulGrpβπ) βΎs (Unitβπ)))) |
45 | 41, 44 | ax-mp 5 |
. . . 4
β’
(.rβπ) =
(+gβ((mulGrpβπ) βΎs (Unitβπ))) |
46 | 40, 45 | grprcan 18854 |
. . 3
β’
((((mulGrpβπ)
βΎs (Unitβπ)) β Grp β§ ((πΉβ((invrβπ
)βπ΄)) β (Unitβπ) β§ ((invrβπ)β(πΉβπ΄)) β (Unitβπ) β§ (πΉβπ΄) β (Unitβπ))) β (((πΉβ((invrβπ
)βπ΄))(.rβπ)(πΉβπ΄)) = (((invrβπ)β(πΉβπ΄))(.rβπ)(πΉβπ΄)) β (πΉβ((invrβπ
)βπ΄)) = ((invrβπ)β(πΉβπ΄)))) |
47 | 35, 37, 39, 26, 46 | syl13anc 1372 |
. 2
β’ ((πΉ β (π
RingHom π) β§ π΄ β (Unitβπ
)) β (((πΉβ((invrβπ
)βπ΄))(.rβπ)(πΉβπ΄)) = (((invrβπ)β(πΉβπ΄))(.rβπ)(πΉβπ΄)) β (πΉβ((invrβπ
)βπ΄)) = ((invrβπ)β(πΉβπ΄)))) |
48 | 31, 47 | mpbid 231 |
1
β’ ((πΉ β (π
RingHom π) β§ π΄ β (Unitβπ
)) β (πΉβ((invrβπ
)βπ΄)) = ((invrβπ)β(πΉβπ΄))) |