Proof of Theorem cnlnadjlem7
Step | Hyp | Ref
| Expression |
1 | | breq1 5077 |
. 2
⊢
((normℎ‘(𝐹‘𝐴)) = 0 →
((normℎ‘(𝐹‘𝐴)) ≤ ((normop‘𝑇) ·
(normℎ‘𝐴)) ↔ 0 ≤
((normop‘𝑇) ·
(normℎ‘𝐴)))) |
2 | | cnlnadjlem.1 |
. . . . . . . . . 10
⊢ 𝑇 ∈ LinOp |
3 | | cnlnadjlem.2 |
. . . . . . . . . 10
⊢ 𝑇 ∈ ContOp |
4 | | cnlnadjlem.3 |
. . . . . . . . . 10
⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) |
5 | | cnlnadjlem.4 |
. . . . . . . . . 10
⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) |
6 | | cnlnadjlem.5 |
. . . . . . . . . 10
⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) |
7 | 2, 3, 4, 5, 6 | cnlnadjlem4 30432 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℋ → (𝐹‘𝐴) ∈ ℋ) |
8 | 2 | lnopfi 30331 |
. . . . . . . . . 10
⊢ 𝑇: ℋ⟶
ℋ |
9 | 8 | ffvelrni 6960 |
. . . . . . . . 9
⊢ ((𝐹‘𝐴) ∈ ℋ → (𝑇‘(𝐹‘𝐴)) ∈ ℋ) |
10 | 7, 9 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ ℋ → (𝑇‘(𝐹‘𝐴)) ∈ ℋ) |
11 | | hicl 29442 |
. . . . . . . 8
⊢ (((𝑇‘(𝐹‘𝐴)) ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑇‘(𝐹‘𝐴)) ·ih 𝐴) ∈
ℂ) |
12 | 10, 11 | mpancom 685 |
. . . . . . 7
⊢ (𝐴 ∈ ℋ → ((𝑇‘(𝐹‘𝐴)) ·ih 𝐴) ∈
ℂ) |
13 | 12 | abscld 15148 |
. . . . . 6
⊢ (𝐴 ∈ ℋ →
(abs‘((𝑇‘(𝐹‘𝐴)) ·ih 𝐴)) ∈
ℝ) |
14 | | normcl 29487 |
. . . . . . . 8
⊢ ((𝑇‘(𝐹‘𝐴)) ∈ ℋ →
(normℎ‘(𝑇‘(𝐹‘𝐴))) ∈ ℝ) |
15 | 10, 14 | syl 17 |
. . . . . . 7
⊢ (𝐴 ∈ ℋ →
(normℎ‘(𝑇‘(𝐹‘𝐴))) ∈ ℝ) |
16 | | normcl 29487 |
. . . . . . 7
⊢ (𝐴 ∈ ℋ →
(normℎ‘𝐴) ∈ ℝ) |
17 | 15, 16 | remulcld 11005 |
. . . . . 6
⊢ (𝐴 ∈ ℋ →
((normℎ‘(𝑇‘(𝐹‘𝐴))) ·
(normℎ‘𝐴)) ∈ ℝ) |
18 | 2, 3 | nmcopexi 30389 |
. . . . . . . 8
⊢
(normop‘𝑇) ∈ ℝ |
19 | | normcl 29487 |
. . . . . . . . 9
⊢ ((𝐹‘𝐴) ∈ ℋ →
(normℎ‘(𝐹‘𝐴)) ∈ ℝ) |
20 | 7, 19 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ ℋ →
(normℎ‘(𝐹‘𝐴)) ∈ ℝ) |
21 | | remulcl 10956 |
. . . . . . . 8
⊢
(((normop‘𝑇) ∈ ℝ ∧
(normℎ‘(𝐹‘𝐴)) ∈ ℝ) →
((normop‘𝑇) ·
(normℎ‘(𝐹‘𝐴))) ∈ ℝ) |
22 | 18, 20, 21 | sylancr 587 |
. . . . . . 7
⊢ (𝐴 ∈ ℋ →
((normop‘𝑇) ·
(normℎ‘(𝐹‘𝐴))) ∈ ℝ) |
23 | 22, 16 | remulcld 11005 |
. . . . . 6
⊢ (𝐴 ∈ ℋ →
(((normop‘𝑇) ·
(normℎ‘(𝐹‘𝐴))) ·
(normℎ‘𝐴)) ∈ ℝ) |
24 | | bcs 29543 |
. . . . . . 7
⊢ (((𝑇‘(𝐹‘𝐴)) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (abs‘((𝑇‘(𝐹‘𝐴)) ·ih 𝐴)) ≤
((normℎ‘(𝑇‘(𝐹‘𝐴))) ·
(normℎ‘𝐴))) |
25 | 10, 24 | mpancom 685 |
. . . . . 6
⊢ (𝐴 ∈ ℋ →
(abs‘((𝑇‘(𝐹‘𝐴)) ·ih 𝐴)) ≤
((normℎ‘(𝑇‘(𝐹‘𝐴))) ·
(normℎ‘𝐴))) |
26 | | normge0 29488 |
. . . . . . 7
⊢ (𝐴 ∈ ℋ → 0 ≤
(normℎ‘𝐴)) |
27 | 2, 3 | nmcoplbi 30390 |
. . . . . . . 8
⊢ ((𝐹‘𝐴) ∈ ℋ →
(normℎ‘(𝑇‘(𝐹‘𝐴))) ≤ ((normop‘𝑇) ·
(normℎ‘(𝐹‘𝐴)))) |
28 | 7, 27 | syl 17 |
. . . . . . 7
⊢ (𝐴 ∈ ℋ →
(normℎ‘(𝑇‘(𝐹‘𝐴))) ≤ ((normop‘𝑇) ·
(normℎ‘(𝐹‘𝐴)))) |
29 | 15, 22, 16, 26, 28 | lemul1ad 11914 |
. . . . . 6
⊢ (𝐴 ∈ ℋ →
((normℎ‘(𝑇‘(𝐹‘𝐴))) ·
(normℎ‘𝐴)) ≤ (((normop‘𝑇) ·
(normℎ‘(𝐹‘𝐴))) ·
(normℎ‘𝐴))) |
30 | 13, 17, 23, 25, 29 | letrd 11132 |
. . . . 5
⊢ (𝐴 ∈ ℋ →
(abs‘((𝑇‘(𝐹‘𝐴)) ·ih 𝐴)) ≤
(((normop‘𝑇) ·
(normℎ‘(𝐹‘𝐴))) ·
(normℎ‘𝐴))) |
31 | 2, 3, 4, 5, 6 | cnlnadjlem5 30433 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℋ ∧ (𝐹‘𝐴) ∈ ℋ) → ((𝑇‘(𝐹‘𝐴)) ·ih 𝐴) = ((𝐹‘𝐴) ·ih (𝐹‘𝐴))) |
32 | 7, 31 | mpdan 684 |
. . . . . . 7
⊢ (𝐴 ∈ ℋ → ((𝑇‘(𝐹‘𝐴)) ·ih 𝐴) = ((𝐹‘𝐴) ·ih (𝐹‘𝐴))) |
33 | 32 | fveq2d 6778 |
. . . . . 6
⊢ (𝐴 ∈ ℋ →
(abs‘((𝑇‘(𝐹‘𝐴)) ·ih 𝐴)) = (abs‘((𝐹‘𝐴) ·ih (𝐹‘𝐴)))) |
34 | | hiidrcl 29457 |
. . . . . . . 8
⊢ ((𝐹‘𝐴) ∈ ℋ → ((𝐹‘𝐴) ·ih (𝐹‘𝐴)) ∈ ℝ) |
35 | 7, 34 | syl 17 |
. . . . . . 7
⊢ (𝐴 ∈ ℋ → ((𝐹‘𝐴) ·ih (𝐹‘𝐴)) ∈ ℝ) |
36 | | hiidge0 29460 |
. . . . . . . 8
⊢ ((𝐹‘𝐴) ∈ ℋ → 0 ≤ ((𝐹‘𝐴) ·ih (𝐹‘𝐴))) |
37 | 7, 36 | syl 17 |
. . . . . . 7
⊢ (𝐴 ∈ ℋ → 0 ≤
((𝐹‘𝐴) ·ih (𝐹‘𝐴))) |
38 | 35, 37 | absidd 15134 |
. . . . . 6
⊢ (𝐴 ∈ ℋ →
(abs‘((𝐹‘𝐴)
·ih (𝐹‘𝐴))) = ((𝐹‘𝐴) ·ih (𝐹‘𝐴))) |
39 | | normsq 29496 |
. . . . . . . 8
⊢ ((𝐹‘𝐴) ∈ ℋ →
((normℎ‘(𝐹‘𝐴))↑2) = ((𝐹‘𝐴) ·ih (𝐹‘𝐴))) |
40 | 7, 39 | syl 17 |
. . . . . . 7
⊢ (𝐴 ∈ ℋ →
((normℎ‘(𝐹‘𝐴))↑2) = ((𝐹‘𝐴) ·ih (𝐹‘𝐴))) |
41 | 20 | recnd 11003 |
. . . . . . . 8
⊢ (𝐴 ∈ ℋ →
(normℎ‘(𝐹‘𝐴)) ∈ ℂ) |
42 | 41 | sqvald 13861 |
. . . . . . 7
⊢ (𝐴 ∈ ℋ →
((normℎ‘(𝐹‘𝐴))↑2) =
((normℎ‘(𝐹‘𝐴)) ·
(normℎ‘(𝐹‘𝐴)))) |
43 | 40, 42 | eqtr3d 2780 |
. . . . . 6
⊢ (𝐴 ∈ ℋ → ((𝐹‘𝐴) ·ih (𝐹‘𝐴)) = ((normℎ‘(𝐹‘𝐴)) ·
(normℎ‘(𝐹‘𝐴)))) |
44 | 33, 38, 43 | 3eqtrd 2782 |
. . . . 5
⊢ (𝐴 ∈ ℋ →
(abs‘((𝑇‘(𝐹‘𝐴)) ·ih 𝐴)) =
((normℎ‘(𝐹‘𝐴)) ·
(normℎ‘(𝐹‘𝐴)))) |
45 | 16 | recnd 11003 |
. . . . . 6
⊢ (𝐴 ∈ ℋ →
(normℎ‘𝐴) ∈ ℂ) |
46 | 18 | recni 10989 |
. . . . . . 7
⊢
(normop‘𝑇) ∈ ℂ |
47 | | mul32 11141 |
. . . . . . 7
⊢
(((normop‘𝑇) ∈ ℂ ∧
(normℎ‘(𝐹‘𝐴)) ∈ ℂ ∧
(normℎ‘𝐴) ∈ ℂ) →
(((normop‘𝑇) ·
(normℎ‘(𝐹‘𝐴))) ·
(normℎ‘𝐴)) = (((normop‘𝑇) ·
(normℎ‘𝐴)) ·
(normℎ‘(𝐹‘𝐴)))) |
48 | 46, 47 | mp3an1 1447 |
. . . . . 6
⊢
(((normℎ‘(𝐹‘𝐴)) ∈ ℂ ∧
(normℎ‘𝐴) ∈ ℂ) →
(((normop‘𝑇) ·
(normℎ‘(𝐹‘𝐴))) ·
(normℎ‘𝐴)) = (((normop‘𝑇) ·
(normℎ‘𝐴)) ·
(normℎ‘(𝐹‘𝐴)))) |
49 | 41, 45, 48 | syl2anc 584 |
. . . . 5
⊢ (𝐴 ∈ ℋ →
(((normop‘𝑇) ·
(normℎ‘(𝐹‘𝐴))) ·
(normℎ‘𝐴)) = (((normop‘𝑇) ·
(normℎ‘𝐴)) ·
(normℎ‘(𝐹‘𝐴)))) |
50 | 30, 44, 49 | 3brtr3d 5105 |
. . . 4
⊢ (𝐴 ∈ ℋ →
((normℎ‘(𝐹‘𝐴)) ·
(normℎ‘(𝐹‘𝐴))) ≤ (((normop‘𝑇) ·
(normℎ‘𝐴)) ·
(normℎ‘(𝐹‘𝐴)))) |
51 | 50 | adantr 481 |
. . 3
⊢ ((𝐴 ∈ ℋ ∧
(normℎ‘(𝐹‘𝐴)) ≠ 0) →
((normℎ‘(𝐹‘𝐴)) ·
(normℎ‘(𝐹‘𝐴))) ≤ (((normop‘𝑇) ·
(normℎ‘𝐴)) ·
(normℎ‘(𝐹‘𝐴)))) |
52 | 20 | adantr 481 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧
(normℎ‘(𝐹‘𝐴)) ≠ 0) →
(normℎ‘(𝐹‘𝐴)) ∈ ℝ) |
53 | | remulcl 10956 |
. . . . . 6
⊢
(((normop‘𝑇) ∈ ℝ ∧
(normℎ‘𝐴) ∈ ℝ) →
((normop‘𝑇) ·
(normℎ‘𝐴)) ∈ ℝ) |
54 | 18, 16, 53 | sylancr 587 |
. . . . 5
⊢ (𝐴 ∈ ℋ →
((normop‘𝑇) ·
(normℎ‘𝐴)) ∈ ℝ) |
55 | 54 | adantr 481 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧
(normℎ‘(𝐹‘𝐴)) ≠ 0) →
((normop‘𝑇) ·
(normℎ‘𝐴)) ∈ ℝ) |
56 | | normge0 29488 |
. . . . . . 7
⊢ ((𝐹‘𝐴) ∈ ℋ → 0 ≤
(normℎ‘(𝐹‘𝐴))) |
57 | | 0re 10977 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
58 | | leltne 11064 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ (normℎ‘(𝐹‘𝐴)) ∈ ℝ ∧ 0 ≤
(normℎ‘(𝐹‘𝐴))) → (0 <
(normℎ‘(𝐹‘𝐴)) ↔
(normℎ‘(𝐹‘𝐴)) ≠ 0)) |
59 | 57, 58 | mp3an1 1447 |
. . . . . . 7
⊢
(((normℎ‘(𝐹‘𝐴)) ∈ ℝ ∧ 0 ≤
(normℎ‘(𝐹‘𝐴))) → (0 <
(normℎ‘(𝐹‘𝐴)) ↔
(normℎ‘(𝐹‘𝐴)) ≠ 0)) |
60 | 19, 56, 59 | syl2anc 584 |
. . . . . 6
⊢ ((𝐹‘𝐴) ∈ ℋ → (0 <
(normℎ‘(𝐹‘𝐴)) ↔
(normℎ‘(𝐹‘𝐴)) ≠ 0)) |
61 | 60 | biimpar 478 |
. . . . 5
⊢ (((𝐹‘𝐴) ∈ ℋ ∧
(normℎ‘(𝐹‘𝐴)) ≠ 0) → 0 <
(normℎ‘(𝐹‘𝐴))) |
62 | 7, 61 | sylan 580 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧
(normℎ‘(𝐹‘𝐴)) ≠ 0) → 0 <
(normℎ‘(𝐹‘𝐴))) |
63 | | lemul1 11827 |
. . . 4
⊢
(((normℎ‘(𝐹‘𝐴)) ∈ ℝ ∧
((normop‘𝑇) ·
(normℎ‘𝐴)) ∈ ℝ ∧
((normℎ‘(𝐹‘𝐴)) ∈ ℝ ∧ 0 <
(normℎ‘(𝐹‘𝐴)))) →
((normℎ‘(𝐹‘𝐴)) ≤ ((normop‘𝑇) ·
(normℎ‘𝐴)) ↔
((normℎ‘(𝐹‘𝐴)) ·
(normℎ‘(𝐹‘𝐴))) ≤ (((normop‘𝑇) ·
(normℎ‘𝐴)) ·
(normℎ‘(𝐹‘𝐴))))) |
64 | 52, 55, 52, 62, 63 | syl112anc 1373 |
. . 3
⊢ ((𝐴 ∈ ℋ ∧
(normℎ‘(𝐹‘𝐴)) ≠ 0) →
((normℎ‘(𝐹‘𝐴)) ≤ ((normop‘𝑇) ·
(normℎ‘𝐴)) ↔
((normℎ‘(𝐹‘𝐴)) ·
(normℎ‘(𝐹‘𝐴))) ≤ (((normop‘𝑇) ·
(normℎ‘𝐴)) ·
(normℎ‘(𝐹‘𝐴))))) |
65 | 51, 64 | mpbird 256 |
. 2
⊢ ((𝐴 ∈ ℋ ∧
(normℎ‘(𝐹‘𝐴)) ≠ 0) →
(normℎ‘(𝐹‘𝐴)) ≤ ((normop‘𝑇) ·
(normℎ‘𝐴))) |
66 | | nmopge0 30273 |
. . . . 5
⊢ (𝑇: ℋ⟶ ℋ →
0 ≤ (normop‘𝑇)) |
67 | 8, 66 | ax-mp 5 |
. . . 4
⊢ 0 ≤
(normop‘𝑇) |
68 | | mulge0 11493 |
. . . 4
⊢
((((normop‘𝑇) ∈ ℝ ∧ 0 ≤
(normop‘𝑇)) ∧
((normℎ‘𝐴) ∈ ℝ ∧ 0 ≤
(normℎ‘𝐴))) → 0 ≤
((normop‘𝑇) ·
(normℎ‘𝐴))) |
69 | 18, 67, 68 | mpanl12 699 |
. . 3
⊢
(((normℎ‘𝐴) ∈ ℝ ∧ 0 ≤
(normℎ‘𝐴)) → 0 ≤
((normop‘𝑇) ·
(normℎ‘𝐴))) |
70 | 16, 26, 69 | syl2anc 584 |
. 2
⊢ (𝐴 ∈ ℋ → 0 ≤
((normop‘𝑇) ·
(normℎ‘𝐴))) |
71 | 1, 65, 70 | pm2.61ne 3030 |
1
⊢ (𝐴 ∈ ℋ →
(normℎ‘(𝐹‘𝐴)) ≤ ((normop‘𝑇) ·
(normℎ‘𝐴))) |