Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hi2eq | Structured version Visualization version GIF version |
Description: Lemma used to prove equality of vectors. (Contributed by NM, 16-Nov-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hi2eq | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih (𝐴 −ℎ 𝐵)) = (𝐵 ·ih (𝐴 −ℎ 𝐵)) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvsubcl 29280 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) ∈ ℋ) | |
2 | his2sub 29355 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (𝐴 −ℎ 𝐵) ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) = ((𝐴 ·ih (𝐴 −ℎ 𝐵)) − (𝐵 ·ih (𝐴 −ℎ 𝐵)))) | |
3 | 1, 2 | mpd3an3 1460 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) = ((𝐴 ·ih (𝐴 −ℎ 𝐵)) − (𝐵 ·ih (𝐴 −ℎ 𝐵)))) |
4 | 3 | eqeq1d 2740 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) = 0 ↔ ((𝐴 ·ih (𝐴 −ℎ 𝐵)) − (𝐵 ·ih (𝐴 −ℎ 𝐵))) = 0)) |
5 | his6 29362 | . . . 4 ⊢ ((𝐴 −ℎ 𝐵) ∈ ℋ → (((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) = 0 ↔ (𝐴 −ℎ 𝐵) = 0ℎ)) | |
6 | 1, 5 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) = 0 ↔ (𝐴 −ℎ 𝐵) = 0ℎ)) |
7 | 4, 6 | bitr3d 280 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih (𝐴 −ℎ 𝐵)) − (𝐵 ·ih (𝐴 −ℎ 𝐵))) = 0 ↔ (𝐴 −ℎ 𝐵) = 0ℎ)) |
8 | hicl 29343 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (𝐴 −ℎ 𝐵) ∈ ℋ) → (𝐴 ·ih (𝐴 −ℎ 𝐵)) ∈ ℂ) | |
9 | 1, 8 | syldan 590 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝐴 −ℎ 𝐵)) ∈ ℂ) |
10 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 𝐵 ∈ ℋ) | |
11 | hicl 29343 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ (𝐴 −ℎ 𝐵) ∈ ℋ) → (𝐵 ·ih (𝐴 −ℎ 𝐵)) ∈ ℂ) | |
12 | 10, 1, 11 | syl2anc 583 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐵 ·ih (𝐴 −ℎ 𝐵)) ∈ ℂ) |
13 | 9, 12 | subeq0ad 11272 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih (𝐴 −ℎ 𝐵)) − (𝐵 ·ih (𝐴 −ℎ 𝐵))) = 0 ↔ (𝐴 ·ih (𝐴 −ℎ 𝐵)) = (𝐵 ·ih (𝐴 −ℎ 𝐵)))) |
14 | hvsubeq0 29331 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 −ℎ 𝐵) = 0ℎ ↔ 𝐴 = 𝐵)) | |
15 | 7, 13, 14 | 3bitr3d 308 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih (𝐴 −ℎ 𝐵)) = (𝐵 ·ih (𝐴 −ℎ 𝐵)) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 0cc0 10802 − cmin 11135 ℋchba 29182 ·ih csp 29185 0ℎc0v 29187 −ℎ cmv 29188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvdistr2 29272 ax-hvmul0 29273 ax-hfi 29342 ax-his2 29346 ax-his3 29347 ax-his4 29348 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 df-hvsub 29234 |
This theorem is referenced by: hial2eq 29369 |
Copyright terms: Public domain | W3C validator |