HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hi2eq Structured version   Visualization version   GIF version

Theorem hi2eq 31092
Description: Lemma used to prove equality of vectors. (Contributed by NM, 16-Nov-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hi2eq ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih (𝐴 𝐵)) = (𝐵 ·ih (𝐴 𝐵)) ↔ 𝐴 = 𝐵))

Proof of Theorem hi2eq
StepHypRef Expression
1 hvsubcl 31004 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) ∈ ℋ)
2 his2sub 31079 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (𝐴 𝐵) ∈ ℋ) → ((𝐴 𝐵) ·ih (𝐴 𝐵)) = ((𝐴 ·ih (𝐴 𝐵)) − (𝐵 ·ih (𝐴 𝐵))))
31, 2mpd3an3 1464 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 𝐵) ·ih (𝐴 𝐵)) = ((𝐴 ·ih (𝐴 𝐵)) − (𝐵 ·ih (𝐴 𝐵))))
43eqeq1d 2733 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 𝐵) ·ih (𝐴 𝐵)) = 0 ↔ ((𝐴 ·ih (𝐴 𝐵)) − (𝐵 ·ih (𝐴 𝐵))) = 0))
5 his6 31086 . . . 4 ((𝐴 𝐵) ∈ ℋ → (((𝐴 𝐵) ·ih (𝐴 𝐵)) = 0 ↔ (𝐴 𝐵) = 0))
61, 5syl 17 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 𝐵) ·ih (𝐴 𝐵)) = 0 ↔ (𝐴 𝐵) = 0))
74, 6bitr3d 281 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih (𝐴 𝐵)) − (𝐵 ·ih (𝐴 𝐵))) = 0 ↔ (𝐴 𝐵) = 0))
8 hicl 31067 . . . 4 ((𝐴 ∈ ℋ ∧ (𝐴 𝐵) ∈ ℋ) → (𝐴 ·ih (𝐴 𝐵)) ∈ ℂ)
91, 8syldan 591 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝐴 𝐵)) ∈ ℂ)
10 simpr 484 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 𝐵 ∈ ℋ)
11 hicl 31067 . . . 4 ((𝐵 ∈ ℋ ∧ (𝐴 𝐵) ∈ ℋ) → (𝐵 ·ih (𝐴 𝐵)) ∈ ℂ)
1210, 1, 11syl2anc 584 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐵 ·ih (𝐴 𝐵)) ∈ ℂ)
139, 12subeq0ad 11488 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih (𝐴 𝐵)) − (𝐵 ·ih (𝐴 𝐵))) = 0 ↔ (𝐴 ·ih (𝐴 𝐵)) = (𝐵 ·ih (𝐴 𝐵))))
14 hvsubeq0 31055 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 𝐵) = 0𝐴 = 𝐵))
157, 13, 143bitr3d 309 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih (𝐴 𝐵)) = (𝐵 ·ih (𝐴 𝐵)) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  (class class class)co 7352  cc 11010  0cc0 11012  cmin 11350  chba 30906   ·ih csp 30909  0c0v 30911   cmv 30912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-hfvadd 30987  ax-hvcom 30988  ax-hvass 30989  ax-hv0cl 30990  ax-hvaddid 30991  ax-hfvmul 30992  ax-hvmulid 30993  ax-hvdistr2 30996  ax-hvmul0 30997  ax-hfi 31066  ax-his2 31070  ax-his3 31071  ax-his4 31072
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11154  df-mnf 11155  df-ltxr 11157  df-sub 11352  df-neg 11353  df-hvsub 30958
This theorem is referenced by:  hial2eq  31093
  Copyright terms: Public domain W3C validator