Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hi2eq | Structured version Visualization version GIF version |
Description: Lemma used to prove equality of vectors. (Contributed by NM, 16-Nov-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hi2eq | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih (𝐴 −ℎ 𝐵)) = (𝐵 ·ih (𝐴 −ℎ 𝐵)) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvsubcl 29375 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) ∈ ℋ) | |
2 | his2sub 29450 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (𝐴 −ℎ 𝐵) ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) = ((𝐴 ·ih (𝐴 −ℎ 𝐵)) − (𝐵 ·ih (𝐴 −ℎ 𝐵)))) | |
3 | 1, 2 | mpd3an3 1461 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) = ((𝐴 ·ih (𝐴 −ℎ 𝐵)) − (𝐵 ·ih (𝐴 −ℎ 𝐵)))) |
4 | 3 | eqeq1d 2742 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) = 0 ↔ ((𝐴 ·ih (𝐴 −ℎ 𝐵)) − (𝐵 ·ih (𝐴 −ℎ 𝐵))) = 0)) |
5 | his6 29457 | . . . 4 ⊢ ((𝐴 −ℎ 𝐵) ∈ ℋ → (((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) = 0 ↔ (𝐴 −ℎ 𝐵) = 0ℎ)) | |
6 | 1, 5 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) = 0 ↔ (𝐴 −ℎ 𝐵) = 0ℎ)) |
7 | 4, 6 | bitr3d 280 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih (𝐴 −ℎ 𝐵)) − (𝐵 ·ih (𝐴 −ℎ 𝐵))) = 0 ↔ (𝐴 −ℎ 𝐵) = 0ℎ)) |
8 | hicl 29438 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (𝐴 −ℎ 𝐵) ∈ ℋ) → (𝐴 ·ih (𝐴 −ℎ 𝐵)) ∈ ℂ) | |
9 | 1, 8 | syldan 591 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝐴 −ℎ 𝐵)) ∈ ℂ) |
10 | simpr 485 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 𝐵 ∈ ℋ) | |
11 | hicl 29438 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ (𝐴 −ℎ 𝐵) ∈ ℋ) → (𝐵 ·ih (𝐴 −ℎ 𝐵)) ∈ ℂ) | |
12 | 10, 1, 11 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐵 ·ih (𝐴 −ℎ 𝐵)) ∈ ℂ) |
13 | 9, 12 | subeq0ad 11342 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih (𝐴 −ℎ 𝐵)) − (𝐵 ·ih (𝐴 −ℎ 𝐵))) = 0 ↔ (𝐴 ·ih (𝐴 −ℎ 𝐵)) = (𝐵 ·ih (𝐴 −ℎ 𝐵)))) |
14 | hvsubeq0 29426 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 −ℎ 𝐵) = 0ℎ ↔ 𝐴 = 𝐵)) | |
15 | 7, 13, 14 | 3bitr3d 309 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih (𝐴 −ℎ 𝐵)) = (𝐵 ·ih (𝐴 −ℎ 𝐵)) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 (class class class)co 7271 ℂcc 10870 0cc0 10872 − cmin 11205 ℋchba 29277 ·ih csp 29280 0ℎc0v 29282 −ℎ cmv 29283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-hfvadd 29358 ax-hvcom 29359 ax-hvass 29360 ax-hv0cl 29361 ax-hvaddid 29362 ax-hfvmul 29363 ax-hvmulid 29364 ax-hvdistr2 29367 ax-hvmul0 29368 ax-hfi 29437 ax-his2 29441 ax-his3 29442 ax-his4 29443 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-ltxr 11015 df-sub 11207 df-neg 11208 df-hvsub 29329 |
This theorem is referenced by: hial2eq 29464 |
Copyright terms: Public domain | W3C validator |