HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hi2eq Structured version   Visualization version   GIF version

Theorem hi2eq 29463
Description: Lemma used to prove equality of vectors. (Contributed by NM, 16-Nov-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hi2eq ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih (𝐴 𝐵)) = (𝐵 ·ih (𝐴 𝐵)) ↔ 𝐴 = 𝐵))

Proof of Theorem hi2eq
StepHypRef Expression
1 hvsubcl 29375 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) ∈ ℋ)
2 his2sub 29450 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (𝐴 𝐵) ∈ ℋ) → ((𝐴 𝐵) ·ih (𝐴 𝐵)) = ((𝐴 ·ih (𝐴 𝐵)) − (𝐵 ·ih (𝐴 𝐵))))
31, 2mpd3an3 1461 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 𝐵) ·ih (𝐴 𝐵)) = ((𝐴 ·ih (𝐴 𝐵)) − (𝐵 ·ih (𝐴 𝐵))))
43eqeq1d 2742 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 𝐵) ·ih (𝐴 𝐵)) = 0 ↔ ((𝐴 ·ih (𝐴 𝐵)) − (𝐵 ·ih (𝐴 𝐵))) = 0))
5 his6 29457 . . . 4 ((𝐴 𝐵) ∈ ℋ → (((𝐴 𝐵) ·ih (𝐴 𝐵)) = 0 ↔ (𝐴 𝐵) = 0))
61, 5syl 17 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 𝐵) ·ih (𝐴 𝐵)) = 0 ↔ (𝐴 𝐵) = 0))
74, 6bitr3d 280 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih (𝐴 𝐵)) − (𝐵 ·ih (𝐴 𝐵))) = 0 ↔ (𝐴 𝐵) = 0))
8 hicl 29438 . . . 4 ((𝐴 ∈ ℋ ∧ (𝐴 𝐵) ∈ ℋ) → (𝐴 ·ih (𝐴 𝐵)) ∈ ℂ)
91, 8syldan 591 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝐴 𝐵)) ∈ ℂ)
10 simpr 485 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 𝐵 ∈ ℋ)
11 hicl 29438 . . . 4 ((𝐵 ∈ ℋ ∧ (𝐴 𝐵) ∈ ℋ) → (𝐵 ·ih (𝐴 𝐵)) ∈ ℂ)
1210, 1, 11syl2anc 584 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐵 ·ih (𝐴 𝐵)) ∈ ℂ)
139, 12subeq0ad 11342 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih (𝐴 𝐵)) − (𝐵 ·ih (𝐴 𝐵))) = 0 ↔ (𝐴 ·ih (𝐴 𝐵)) = (𝐵 ·ih (𝐴 𝐵))))
14 hvsubeq0 29426 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 𝐵) = 0𝐴 = 𝐵))
157, 13, 143bitr3d 309 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih (𝐴 𝐵)) = (𝐵 ·ih (𝐴 𝐵)) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  (class class class)co 7271  cc 10870  0cc0 10872  cmin 11205  chba 29277   ·ih csp 29280  0c0v 29282   cmv 29283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-hfvadd 29358  ax-hvcom 29359  ax-hvass 29360  ax-hv0cl 29361  ax-hvaddid 29362  ax-hfvmul 29363  ax-hvmulid 29364  ax-hvdistr2 29367  ax-hvmul0 29368  ax-hfi 29437  ax-his2 29441  ax-his3 29442  ax-his4 29443
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-ltxr 11015  df-sub 11207  df-neg 11208  df-hvsub 29329
This theorem is referenced by:  hial2eq  29464
  Copyright terms: Public domain W3C validator