| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hi2eq | Structured version Visualization version GIF version | ||
| Description: Lemma used to prove equality of vectors. (Contributed by NM, 16-Nov-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hi2eq | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih (𝐴 −ℎ 𝐵)) = (𝐵 ·ih (𝐴 −ℎ 𝐵)) ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvsubcl 30946 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) ∈ ℋ) | |
| 2 | his2sub 31021 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (𝐴 −ℎ 𝐵) ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) = ((𝐴 ·ih (𝐴 −ℎ 𝐵)) − (𝐵 ·ih (𝐴 −ℎ 𝐵)))) | |
| 3 | 1, 2 | mpd3an3 1464 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) = ((𝐴 ·ih (𝐴 −ℎ 𝐵)) − (𝐵 ·ih (𝐴 −ℎ 𝐵)))) |
| 4 | 3 | eqeq1d 2731 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) = 0 ↔ ((𝐴 ·ih (𝐴 −ℎ 𝐵)) − (𝐵 ·ih (𝐴 −ℎ 𝐵))) = 0)) |
| 5 | his6 31028 | . . . 4 ⊢ ((𝐴 −ℎ 𝐵) ∈ ℋ → (((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) = 0 ↔ (𝐴 −ℎ 𝐵) = 0ℎ)) | |
| 6 | 1, 5 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) = 0 ↔ (𝐴 −ℎ 𝐵) = 0ℎ)) |
| 7 | 4, 6 | bitr3d 281 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih (𝐴 −ℎ 𝐵)) − (𝐵 ·ih (𝐴 −ℎ 𝐵))) = 0 ↔ (𝐴 −ℎ 𝐵) = 0ℎ)) |
| 8 | hicl 31009 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (𝐴 −ℎ 𝐵) ∈ ℋ) → (𝐴 ·ih (𝐴 −ℎ 𝐵)) ∈ ℂ) | |
| 9 | 1, 8 | syldan 591 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝐴 −ℎ 𝐵)) ∈ ℂ) |
| 10 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 𝐵 ∈ ℋ) | |
| 11 | hicl 31009 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ (𝐴 −ℎ 𝐵) ∈ ℋ) → (𝐵 ·ih (𝐴 −ℎ 𝐵)) ∈ ℂ) | |
| 12 | 10, 1, 11 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐵 ·ih (𝐴 −ℎ 𝐵)) ∈ ℂ) |
| 13 | 9, 12 | subeq0ad 11543 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih (𝐴 −ℎ 𝐵)) − (𝐵 ·ih (𝐴 −ℎ 𝐵))) = 0 ↔ (𝐴 ·ih (𝐴 −ℎ 𝐵)) = (𝐵 ·ih (𝐴 −ℎ 𝐵)))) |
| 14 | hvsubeq0 30997 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 −ℎ 𝐵) = 0ℎ ↔ 𝐴 = 𝐵)) | |
| 15 | 7, 13, 14 | 3bitr3d 309 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih (𝐴 −ℎ 𝐵)) = (𝐵 ·ih (𝐴 −ℎ 𝐵)) ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 0cc0 11068 − cmin 11405 ℋchba 30848 ·ih csp 30851 0ℎc0v 30853 −ℎ cmv 30854 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-hfvadd 30929 ax-hvcom 30930 ax-hvass 30931 ax-hv0cl 30932 ax-hvaddid 30933 ax-hfvmul 30934 ax-hvmulid 30935 ax-hvdistr2 30938 ax-hvmul0 30939 ax-hfi 31008 ax-his2 31012 ax-his3 31013 ax-his4 31014 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-neg 11408 df-hvsub 30900 |
| This theorem is referenced by: hial2eq 31035 |
| Copyright terms: Public domain | W3C validator |