| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hi2eq | Structured version Visualization version GIF version | ||
| Description: Lemma used to prove equality of vectors. (Contributed by NM, 16-Nov-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hi2eq | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih (𝐴 −ℎ 𝐵)) = (𝐵 ·ih (𝐴 −ℎ 𝐵)) ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvsubcl 30998 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) ∈ ℋ) | |
| 2 | his2sub 31073 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (𝐴 −ℎ 𝐵) ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) = ((𝐴 ·ih (𝐴 −ℎ 𝐵)) − (𝐵 ·ih (𝐴 −ℎ 𝐵)))) | |
| 3 | 1, 2 | mpd3an3 1464 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) = ((𝐴 ·ih (𝐴 −ℎ 𝐵)) − (𝐵 ·ih (𝐴 −ℎ 𝐵)))) |
| 4 | 3 | eqeq1d 2737 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) = 0 ↔ ((𝐴 ·ih (𝐴 −ℎ 𝐵)) − (𝐵 ·ih (𝐴 −ℎ 𝐵))) = 0)) |
| 5 | his6 31080 | . . . 4 ⊢ ((𝐴 −ℎ 𝐵) ∈ ℋ → (((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) = 0 ↔ (𝐴 −ℎ 𝐵) = 0ℎ)) | |
| 6 | 1, 5 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) = 0 ↔ (𝐴 −ℎ 𝐵) = 0ℎ)) |
| 7 | 4, 6 | bitr3d 281 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih (𝐴 −ℎ 𝐵)) − (𝐵 ·ih (𝐴 −ℎ 𝐵))) = 0 ↔ (𝐴 −ℎ 𝐵) = 0ℎ)) |
| 8 | hicl 31061 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (𝐴 −ℎ 𝐵) ∈ ℋ) → (𝐴 ·ih (𝐴 −ℎ 𝐵)) ∈ ℂ) | |
| 9 | 1, 8 | syldan 591 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝐴 −ℎ 𝐵)) ∈ ℂ) |
| 10 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 𝐵 ∈ ℋ) | |
| 11 | hicl 31061 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ (𝐴 −ℎ 𝐵) ∈ ℋ) → (𝐵 ·ih (𝐴 −ℎ 𝐵)) ∈ ℂ) | |
| 12 | 10, 1, 11 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐵 ·ih (𝐴 −ℎ 𝐵)) ∈ ℂ) |
| 13 | 9, 12 | subeq0ad 11604 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih (𝐴 −ℎ 𝐵)) − (𝐵 ·ih (𝐴 −ℎ 𝐵))) = 0 ↔ (𝐴 ·ih (𝐴 −ℎ 𝐵)) = (𝐵 ·ih (𝐴 −ℎ 𝐵)))) |
| 14 | hvsubeq0 31049 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 −ℎ 𝐵) = 0ℎ ↔ 𝐴 = 𝐵)) | |
| 15 | 7, 13, 14 | 3bitr3d 309 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih (𝐴 −ℎ 𝐵)) = (𝐵 ·ih (𝐴 −ℎ 𝐵)) ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 0cc0 11129 − cmin 11466 ℋchba 30900 ·ih csp 30903 0ℎc0v 30905 −ℎ cmv 30906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-hfvadd 30981 ax-hvcom 30982 ax-hvass 30983 ax-hv0cl 30984 ax-hvaddid 30985 ax-hfvmul 30986 ax-hvmulid 30987 ax-hvdistr2 30990 ax-hvmul0 30991 ax-hfi 31060 ax-his2 31064 ax-his3 31065 ax-his4 31066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-sub 11468 df-neg 11469 df-hvsub 30952 |
| This theorem is referenced by: hial2eq 31087 |
| Copyright terms: Public domain | W3C validator |