HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimconvi Structured version   Visualization version   GIF version

Theorem hlimconvi 30439
Description: Convergence of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Hypothesis
Ref Expression
hlim.1 𝐴 ∈ V
Assertion
Ref Expression
hlimconvi ((𝐹𝑣 𝐴𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝐵)
Distinct variable groups:   𝑦,𝑧,𝐹   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧

Proof of Theorem hlimconvi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hlim.1 . . . 4 𝐴 ∈ V
21hlimi 30436 . . 3 (𝐹𝑣 𝐴 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
32simprbi 497 . 2 (𝐹𝑣 𝐴 → ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥)
4 breq2 5152 . . . 4 (𝑥 = 𝐵 → ((norm‘((𝐹𝑧) − 𝐴)) < 𝑥 ↔ (norm‘((𝐹𝑧) − 𝐴)) < 𝐵))
54rexralbidv 3220 . . 3 (𝑥 = 𝐵 → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝐵))
65rspccva 3611 . 2 ((∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝐵)
73, 6sylan 580 1 ((𝐹𝑣 𝐴𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070  Vcvv 3474   class class class wbr 5148  wf 6539  cfv 6543  (class class class)co 7408   < clt 11247  cn 12211  cuz 12821  +crp 12973  chba 30167  normcno 30171   cmv 30173  𝑣 chli 30175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-1cn 11167  ax-addcl 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-nn 12212  df-hlim 30220
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator