| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hlim2 | Structured version Visualization version GIF version | ||
| Description: The limit of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlim2 | ⊢ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝐹 ⇝𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5114 | . . . . 5 ⊢ (𝑤 = 𝐴 → (𝐹 ⇝𝑣 𝑤 ↔ 𝐹 ⇝𝑣 𝐴)) | |
| 2 | oveq2 7398 | . . . . . . . . 9 ⊢ (𝑤 = 𝐴 → ((𝐹‘𝑧) −ℎ 𝑤) = ((𝐹‘𝑧) −ℎ 𝐴)) | |
| 3 | 2 | fveq2d 6865 | . . . . . . . 8 ⊢ (𝑤 = 𝐴 → (normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) = (normℎ‘((𝐹‘𝑧) −ℎ 𝐴))) |
| 4 | 3 | breq1d 5120 | . . . . . . 7 ⊢ (𝑤 = 𝐴 → ((normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥 ↔ (normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
| 5 | 4 | rexralbidv 3204 | . . . . . 6 ⊢ (𝑤 = 𝐴 → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
| 6 | 5 | ralbidv 3157 | . . . . 5 ⊢ (𝑤 = 𝐴 → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
| 7 | 1, 6 | bibi12d 345 | . . . 4 ⊢ (𝑤 = 𝐴 → ((𝐹 ⇝𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥) ↔ (𝐹 ⇝𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥))) |
| 8 | 7 | imbi2d 340 | . . 3 ⊢ (𝑤 = 𝐴 → ((𝐹:ℕ⟶ ℋ → (𝐹 ⇝𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥)) ↔ (𝐹:ℕ⟶ ℋ → (𝐹 ⇝𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)))) |
| 9 | vex 3454 | . . . . . 6 ⊢ 𝑤 ∈ V | |
| 10 | 9 | hlimi 31124 | . . . . 5 ⊢ (𝐹 ⇝𝑣 𝑤 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥)) |
| 11 | 10 | baib 535 | . . . 4 ⊢ ((𝐹:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) → (𝐹 ⇝𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥)) |
| 12 | 11 | expcom 413 | . . 3 ⊢ (𝑤 ∈ ℋ → (𝐹:ℕ⟶ ℋ → (𝐹 ⇝𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥))) |
| 13 | 8, 12 | vtoclga 3546 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐹:ℕ⟶ ℋ → (𝐹 ⇝𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥))) |
| 14 | 13 | impcom 407 | 1 ⊢ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝐹 ⇝𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 class class class wbr 5110 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 < clt 11215 ℕcn 12193 ℤ≥cuz 12800 ℝ+crp 12958 ℋchba 30855 normℎcno 30859 −ℎ cmv 30861 ⇝𝑣 chli 30863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-hlim 30908 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |