HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlim2 Structured version   Visualization version   GIF version

Theorem hlim2 31211
Description: The limit of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hlim2 ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝐹𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐴,𝑦,𝑧

Proof of Theorem hlim2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 breq2 5147 . . . . 5 (𝑤 = 𝐴 → (𝐹𝑣 𝑤𝐹𝑣 𝐴))
2 oveq2 7439 . . . . . . . . 9 (𝑤 = 𝐴 → ((𝐹𝑧) − 𝑤) = ((𝐹𝑧) − 𝐴))
32fveq2d 6910 . . . . . . . 8 (𝑤 = 𝐴 → (norm‘((𝐹𝑧) − 𝑤)) = (norm‘((𝐹𝑧) − 𝐴)))
43breq1d 5153 . . . . . . 7 (𝑤 = 𝐴 → ((norm‘((𝐹𝑧) − 𝑤)) < 𝑥 ↔ (norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
54rexralbidv 3223 . . . . . 6 (𝑤 = 𝐴 → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
65ralbidv 3178 . . . . 5 (𝑤 = 𝐴 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
71, 6bibi12d 345 . . . 4 (𝑤 = 𝐴 → ((𝐹𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥) ↔ (𝐹𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥)))
87imbi2d 340 . . 3 (𝑤 = 𝐴 → ((𝐹:ℕ⟶ ℋ → (𝐹𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥)) ↔ (𝐹:ℕ⟶ ℋ → (𝐹𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))))
9 vex 3484 . . . . . 6 𝑤 ∈ V
109hlimi 31207 . . . . 5 (𝐹𝑣 𝑤 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥))
1110baib 535 . . . 4 ((𝐹:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) → (𝐹𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥))
1211expcom 413 . . 3 (𝑤 ∈ ℋ → (𝐹:ℕ⟶ ℋ → (𝐹𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥)))
138, 12vtoclga 3577 . 2 (𝐴 ∈ ℋ → (𝐹:ℕ⟶ ℋ → (𝐹𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥)))
1413impcom 407 1 ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝐹𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431   < clt 11295  cn 12266  cuz 12878  +crp 13034  chba 30938  normcno 30942   cmv 30944  𝑣 chli 30946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-1cn 11213  ax-addcl 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-nn 12267  df-hlim 30991
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator