HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlim2 Structured version   Visualization version   GIF version

Theorem hlim2 30432
Description: The limit of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hlim2 ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝐹𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐴,𝑦,𝑧

Proof of Theorem hlim2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 breq2 5151 . . . . 5 (𝑤 = 𝐴 → (𝐹𝑣 𝑤𝐹𝑣 𝐴))
2 oveq2 7413 . . . . . . . . 9 (𝑤 = 𝐴 → ((𝐹𝑧) − 𝑤) = ((𝐹𝑧) − 𝐴))
32fveq2d 6892 . . . . . . . 8 (𝑤 = 𝐴 → (norm‘((𝐹𝑧) − 𝑤)) = (norm‘((𝐹𝑧) − 𝐴)))
43breq1d 5157 . . . . . . 7 (𝑤 = 𝐴 → ((norm‘((𝐹𝑧) − 𝑤)) < 𝑥 ↔ (norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
54rexralbidv 3220 . . . . . 6 (𝑤 = 𝐴 → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
65ralbidv 3177 . . . . 5 (𝑤 = 𝐴 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
71, 6bibi12d 345 . . . 4 (𝑤 = 𝐴 → ((𝐹𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥) ↔ (𝐹𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥)))
87imbi2d 340 . . 3 (𝑤 = 𝐴 → ((𝐹:ℕ⟶ ℋ → (𝐹𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥)) ↔ (𝐹:ℕ⟶ ℋ → (𝐹𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))))
9 vex 3478 . . . . . 6 𝑤 ∈ V
109hlimi 30428 . . . . 5 (𝐹𝑣 𝑤 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥))
1110baib 536 . . . 4 ((𝐹:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) → (𝐹𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥))
1211expcom 414 . . 3 (𝑤 ∈ ℋ → (𝐹:ℕ⟶ ℋ → (𝐹𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥)))
138, 12vtoclga 3565 . 2 (𝐴 ∈ ℋ → (𝐹:ℕ⟶ ℋ → (𝐹𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥)))
1413impcom 408 1 ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝐹𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070   class class class wbr 5147  wf 6536  cfv 6540  (class class class)co 7405   < clt 11244  cn 12208  cuz 12818  +crp 12970  chba 30159  normcno 30163   cmv 30165  𝑣 chli 30167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-1cn 11164  ax-addcl 11166
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-nn 12209  df-hlim 30212
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator