![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hlim2 | Structured version Visualization version GIF version |
Description: The limit of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlim2 | ⊢ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝐹 ⇝𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5152 | . . . . 5 ⊢ (𝑤 = 𝐴 → (𝐹 ⇝𝑣 𝑤 ↔ 𝐹 ⇝𝑣 𝐴)) | |
2 | oveq2 7439 | . . . . . . . . 9 ⊢ (𝑤 = 𝐴 → ((𝐹‘𝑧) −ℎ 𝑤) = ((𝐹‘𝑧) −ℎ 𝐴)) | |
3 | 2 | fveq2d 6911 | . . . . . . . 8 ⊢ (𝑤 = 𝐴 → (normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) = (normℎ‘((𝐹‘𝑧) −ℎ 𝐴))) |
4 | 3 | breq1d 5158 | . . . . . . 7 ⊢ (𝑤 = 𝐴 → ((normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥 ↔ (normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
5 | 4 | rexralbidv 3221 | . . . . . 6 ⊢ (𝑤 = 𝐴 → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
6 | 5 | ralbidv 3176 | . . . . 5 ⊢ (𝑤 = 𝐴 → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
7 | 1, 6 | bibi12d 345 | . . . 4 ⊢ (𝑤 = 𝐴 → ((𝐹 ⇝𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥) ↔ (𝐹 ⇝𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥))) |
8 | 7 | imbi2d 340 | . . 3 ⊢ (𝑤 = 𝐴 → ((𝐹:ℕ⟶ ℋ → (𝐹 ⇝𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥)) ↔ (𝐹:ℕ⟶ ℋ → (𝐹 ⇝𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)))) |
9 | vex 3482 | . . . . . 6 ⊢ 𝑤 ∈ V | |
10 | 9 | hlimi 31217 | . . . . 5 ⊢ (𝐹 ⇝𝑣 𝑤 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥)) |
11 | 10 | baib 535 | . . . 4 ⊢ ((𝐹:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) → (𝐹 ⇝𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥)) |
12 | 11 | expcom 413 | . . 3 ⊢ (𝑤 ∈ ℋ → (𝐹:ℕ⟶ ℋ → (𝐹 ⇝𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥))) |
13 | 8, 12 | vtoclga 3577 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐹:ℕ⟶ ℋ → (𝐹 ⇝𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥))) |
14 | 13 | impcom 407 | 1 ⊢ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝐹 ⇝𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 class class class wbr 5148 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 < clt 11293 ℕcn 12264 ℤ≥cuz 12876 ℝ+crp 13032 ℋchba 30948 normℎcno 30952 −ℎ cmv 30954 ⇝𝑣 chli 30956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-1cn 11211 ax-addcl 11213 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-nn 12265 df-hlim 31001 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |