HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlim2 Structured version   Visualization version   GIF version

Theorem hlim2 29455
Description: The limit of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hlim2 ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝐹𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐴,𝑦,𝑧

Proof of Theorem hlim2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 breq2 5074 . . . . 5 (𝑤 = 𝐴 → (𝐹𝑣 𝑤𝐹𝑣 𝐴))
2 oveq2 7263 . . . . . . . . 9 (𝑤 = 𝐴 → ((𝐹𝑧) − 𝑤) = ((𝐹𝑧) − 𝐴))
32fveq2d 6760 . . . . . . . 8 (𝑤 = 𝐴 → (norm‘((𝐹𝑧) − 𝑤)) = (norm‘((𝐹𝑧) − 𝐴)))
43breq1d 5080 . . . . . . 7 (𝑤 = 𝐴 → ((norm‘((𝐹𝑧) − 𝑤)) < 𝑥 ↔ (norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
54rexralbidv 3229 . . . . . 6 (𝑤 = 𝐴 → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
65ralbidv 3120 . . . . 5 (𝑤 = 𝐴 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
71, 6bibi12d 345 . . . 4 (𝑤 = 𝐴 → ((𝐹𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥) ↔ (𝐹𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥)))
87imbi2d 340 . . 3 (𝑤 = 𝐴 → ((𝐹:ℕ⟶ ℋ → (𝐹𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥)) ↔ (𝐹:ℕ⟶ ℋ → (𝐹𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))))
9 vex 3426 . . . . . 6 𝑤 ∈ V
109hlimi 29451 . . . . 5 (𝐹𝑣 𝑤 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥))
1110baib 535 . . . 4 ((𝐹:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) → (𝐹𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥))
1211expcom 413 . . 3 (𝑤 ∈ ℋ → (𝐹:ℕ⟶ ℋ → (𝐹𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥)))
138, 12vtoclga 3503 . 2 (𝐴 ∈ ℋ → (𝐹:ℕ⟶ ℋ → (𝐹𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥)))
1413impcom 407 1 ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝐹𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255   < clt 10940  cn 11903  cuz 12511  +crp 12659  chba 29182  normcno 29186   cmv 29188  𝑣 chli 29190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-1cn 10860  ax-addcl 10862
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-nn 11904  df-hlim 29235
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator