Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀)) = (ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀)) |
2 | | 0z 12330 |
. . . 4
⊢ 0 ∈
ℤ |
3 | | explecnv.3 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
4 | | ifcl 4504 |
. . . 4
⊢ ((0
∈ ℤ ∧ 𝑀
∈ ℤ) → if(𝑀
≤ 0, 0, 𝑀) ∈
ℤ) |
5 | 2, 3, 4 | sylancr 587 |
. . 3
⊢ (𝜑 → if(𝑀 ≤ 0, 0, 𝑀) ∈ ℤ) |
6 | | explecnv.5 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℝ) |
7 | 6 | recnd 11003 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℂ) |
8 | | explecnv.4 |
. . . 4
⊢ (𝜑 → (abs‘𝐴) < 1) |
9 | 7, 8 | expcnv 15576 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |
10 | | explecnv.1 |
. . . . . 6
⊢ 𝑍 =
(ℤ≥‘𝑀) |
11 | 10 | fvexi 6788 |
. . . . 5
⊢ 𝑍 ∈ V |
12 | 11 | mptex 7099 |
. . . 4
⊢ (𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛))) ∈ V |
13 | 12 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛))) ∈ V) |
14 | | nn0uz 12620 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
15 | 10, 14 | ineq12i 4144 |
. . . . . . . . 9
⊢ (𝑍 ∩ ℕ0) =
((ℤ≥‘𝑀) ∩
(ℤ≥‘0)) |
16 | | uzin 12618 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 0 ∈
ℤ) → ((ℤ≥‘𝑀) ∩ (ℤ≥‘0)) =
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) |
17 | 3, 2, 16 | sylancl 586 |
. . . . . . . . 9
⊢ (𝜑 →
((ℤ≥‘𝑀) ∩ (ℤ≥‘0)) =
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) |
18 | 15, 17 | eqtr2id 2791 |
. . . . . . . 8
⊢ (𝜑 →
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀)) = (𝑍 ∩
ℕ0)) |
19 | 18 | eleq2d 2824 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀)) ↔ 𝑘 ∈ (𝑍 ∩
ℕ0))) |
20 | 19 | biimpa 477 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝑘 ∈ (𝑍 ∩
ℕ0)) |
21 | 20 | elin2d 4133 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝑘 ∈ ℕ0) |
22 | | oveq2 7283 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (𝐴↑𝑛) = (𝐴↑𝑘)) |
23 | | eqid 2738 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) |
24 | | ovex 7308 |
. . . . . 6
⊢ (𝐴↑𝑘) ∈ V |
25 | 22, 23, 24 | fvmpt 6875 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
26 | 21, 25 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
27 | 6 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝐴 ∈ ℝ) |
28 | 27, 21 | reexpcld 13881 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → (𝐴↑𝑘) ∈ ℝ) |
29 | 26, 28 | eqeltrd 2839 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) ∈ ℝ) |
30 | 20 | elin1d 4132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝑘 ∈ 𝑍) |
31 | | 2fveq3 6779 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (abs‘(𝐹‘𝑛)) = (abs‘(𝐹‘𝑘))) |
32 | | eqid 2738 |
. . . . . 6
⊢ (𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛))) = (𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛))) |
33 | | fvex 6787 |
. . . . . 6
⊢
(abs‘(𝐹‘𝑘)) ∈ V |
34 | 31, 32, 33 | fvmpt 6875 |
. . . . 5
⊢ (𝑘 ∈ 𝑍 → ((𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛)))‘𝑘) = (abs‘(𝐹‘𝑘))) |
35 | 30, 34 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛)))‘𝑘) = (abs‘(𝐹‘𝑘))) |
36 | | explecnv.6 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
37 | 30, 36 | syldan 591 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → (𝐹‘𝑘) ∈ ℂ) |
38 | 37 | abscld 15148 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
39 | 35, 38 | eqeltrd 2839 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛)))‘𝑘) ∈ ℝ) |
40 | | explecnv.7 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ≤ (𝐴↑𝑘)) |
41 | 30, 40 | syldan 591 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → (abs‘(𝐹‘𝑘)) ≤ (𝐴↑𝑘)) |
42 | 41, 35, 26 | 3brtr4d 5106 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛)))‘𝑘) ≤ ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘)) |
43 | 37 | absge0d 15156 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → 0 ≤ (abs‘(𝐹‘𝑘))) |
44 | 43, 35 | breqtrrd 5102 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → 0 ≤ ((𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛)))‘𝑘)) |
45 | 1, 5, 9, 13, 29, 39, 42, 44 | climsqz2 15351 |
. 2
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛))) ⇝ 0) |
46 | | explecnv.2 |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
47 | 34 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛)))‘𝑘) = (abs‘(𝐹‘𝑘))) |
48 | 10, 3, 46, 13, 36, 47 | climabs0 15294 |
. 2
⊢ (𝜑 → (𝐹 ⇝ 0 ↔ (𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛))) ⇝ 0)) |
49 | 45, 48 | mpbird 256 |
1
⊢ (𝜑 → 𝐹 ⇝ 0) |