MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqaalem2 Structured version   Visualization version   GIF version

Theorem elqaalem2 26235
Description: Lemma for elqaa 26237. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
elqaa.1 (𝜑𝐴 ∈ ℂ)
elqaa.2 (𝜑𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
elqaa.3 (𝜑 → (𝐹𝐴) = 0)
elqaa.4 𝐵 = (coeff‘𝐹)
elqaa.5 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
elqaa.6 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹))
elqaa.7 𝑃 = (𝑥 ∈ V, 𝑦 ∈ V ↦ ((𝑥 · 𝑦) mod (𝑁𝐾)))
Assertion
Ref Expression
elqaalem2 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (𝑅 mod (𝑁𝐾)) = 0)
Distinct variable groups:   𝑘,𝑛,𝑥,𝑦,𝐴   𝐵,𝑘,𝑛   𝜑,𝑘   𝑘,𝐾,𝑛,𝑥,𝑦   𝑘,𝑁,𝑛,𝑥,𝑦   𝑅,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝐵(𝑥,𝑦)   𝑃(𝑥,𝑦,𝑘,𝑛)   𝑅(𝑥,𝑦,𝑛)   𝐹(𝑥,𝑦,𝑘,𝑛)

Proof of Theorem elqaalem2
Dummy variables 𝑚 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfznn0 13588 . . 3 (𝐾 ∈ (0...(deg‘𝐹)) → 𝐾 ∈ ℕ0)
2 elqaa.6 . . . . 5 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹))
32fveq2i 6864 . . . 4 ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑅) = ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘(seq0( · , 𝑁)‘(deg‘𝐹)))
4 nnmulcl 12217 . . . . . 6 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑖 · 𝑗) ∈ ℕ)
54adantl 481 . . . . 5 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑖 · 𝑗) ∈ ℕ)
6 elfznn0 13588 . . . . . 6 (𝑖 ∈ (0...(deg‘𝐹)) → 𝑖 ∈ ℕ0)
7 elqaa.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
8 elqaa.2 . . . . . . . . 9 (𝜑𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
9 elqaa.3 . . . . . . . . 9 (𝜑 → (𝐹𝐴) = 0)
10 elqaa.4 . . . . . . . . 9 𝐵 = (coeff‘𝐹)
11 elqaa.5 . . . . . . . . 9 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
127, 8, 9, 10, 11, 2elqaalem1 26234 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → ((𝑁𝑖) ∈ ℕ ∧ ((𝐵𝑖) · (𝑁𝑖)) ∈ ℤ))
1312simpld 494 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝑁𝑖) ∈ ℕ)
1413adantlr 715 . . . . . 6 (((𝜑𝐾 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝑁𝑖) ∈ ℕ)
156, 14sylan2 593 . . . . 5 (((𝜑𝐾 ∈ ℕ0) ∧ 𝑖 ∈ (0...(deg‘𝐹))) → (𝑁𝑖) ∈ ℕ)
16 eldifi 4097 . . . . . . . 8 (𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}) → 𝐹 ∈ (Poly‘ℚ))
17 dgrcl 26145 . . . . . . . 8 (𝐹 ∈ (Poly‘ℚ) → (deg‘𝐹) ∈ ℕ0)
188, 16, 173syl 18 . . . . . . 7 (𝜑 → (deg‘𝐹) ∈ ℕ0)
19 nn0uz 12842 . . . . . . 7 0 = (ℤ‘0)
2018, 19eleqtrdi 2839 . . . . . 6 (𝜑 → (deg‘𝐹) ∈ (ℤ‘0))
2120adantr 480 . . . . 5 ((𝜑𝐾 ∈ ℕ0) → (deg‘𝐹) ∈ (ℤ‘0))
22 nnz 12557 . . . . . . . . . 10 (𝑖 ∈ ℕ → 𝑖 ∈ ℤ)
2322ad2antrl 728 . . . . . . . . 9 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝑖 ∈ ℤ)
247, 8, 9, 10, 11, 2elqaalem1 26234 . . . . . . . . . . 11 ((𝜑𝐾 ∈ ℕ0) → ((𝑁𝐾) ∈ ℕ ∧ ((𝐵𝐾) · (𝑁𝐾)) ∈ ℤ))
2524simpld 494 . . . . . . . . . 10 ((𝜑𝐾 ∈ ℕ0) → (𝑁𝐾) ∈ ℕ)
2625adantr 480 . . . . . . . . 9 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑁𝐾) ∈ ℕ)
2723, 26zmodcld 13861 . . . . . . . 8 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑖 mod (𝑁𝐾)) ∈ ℕ0)
2827nn0zd 12562 . . . . . . 7 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑖 mod (𝑁𝐾)) ∈ ℤ)
29 nnz 12557 . . . . . . . . . 10 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
3029ad2antll 729 . . . . . . . . 9 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝑗 ∈ ℤ)
3130, 26zmodcld 13861 . . . . . . . 8 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑗 mod (𝑁𝐾)) ∈ ℕ0)
3231nn0zd 12562 . . . . . . 7 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑗 mod (𝑁𝐾)) ∈ ℤ)
3326nnrpd 13000 . . . . . . 7 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑁𝐾) ∈ ℝ+)
34 nnre 12200 . . . . . . . . 9 (𝑖 ∈ ℕ → 𝑖 ∈ ℝ)
3534ad2antrl 728 . . . . . . . 8 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝑖 ∈ ℝ)
36 modabs2 13874 . . . . . . . 8 ((𝑖 ∈ ℝ ∧ (𝑁𝐾) ∈ ℝ+) → ((𝑖 mod (𝑁𝐾)) mod (𝑁𝐾)) = (𝑖 mod (𝑁𝐾)))
3735, 33, 36syl2anc 584 . . . . . . 7 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ((𝑖 mod (𝑁𝐾)) mod (𝑁𝐾)) = (𝑖 mod (𝑁𝐾)))
38 nnre 12200 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
3938ad2antll 729 . . . . . . . 8 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝑗 ∈ ℝ)
40 modabs2 13874 . . . . . . . 8 ((𝑗 ∈ ℝ ∧ (𝑁𝐾) ∈ ℝ+) → ((𝑗 mod (𝑁𝐾)) mod (𝑁𝐾)) = (𝑗 mod (𝑁𝐾)))
4139, 33, 40syl2anc 584 . . . . . . 7 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ((𝑗 mod (𝑁𝐾)) mod (𝑁𝐾)) = (𝑗 mod (𝑁𝐾)))
4228, 23, 32, 30, 33, 37, 41modmul12d 13897 . . . . . 6 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (((𝑖 mod (𝑁𝐾)) · (𝑗 mod (𝑁𝐾))) mod (𝑁𝐾)) = ((𝑖 · 𝑗) mod (𝑁𝐾)))
43 oveq1 7397 . . . . . . . . . 10 (𝑘 = 𝑖 → (𝑘 mod (𝑁𝐾)) = (𝑖 mod (𝑁𝐾)))
44 eqid 2730 . . . . . . . . . 10 (𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾))) = (𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))
45 ovex 7423 . . . . . . . . . 10 (𝑖 mod (𝑁𝐾)) ∈ V
4643, 44, 45fvmpt 6971 . . . . . . . . 9 (𝑖 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑖) = (𝑖 mod (𝑁𝐾)))
4746ad2antrl 728 . . . . . . . 8 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑖) = (𝑖 mod (𝑁𝐾)))
48 oveq1 7397 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑘 mod (𝑁𝐾)) = (𝑗 mod (𝑁𝐾)))
49 ovex 7423 . . . . . . . . . 10 (𝑗 mod (𝑁𝐾)) ∈ V
5048, 44, 49fvmpt 6971 . . . . . . . . 9 (𝑗 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑗) = (𝑗 mod (𝑁𝐾)))
5150ad2antll 729 . . . . . . . 8 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑗) = (𝑗 mod (𝑁𝐾)))
5247, 51oveq12d 7408 . . . . . . 7 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑖)𝑃((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑗)) = ((𝑖 mod (𝑁𝐾))𝑃(𝑗 mod (𝑁𝐾))))
53 oveq12 7399 . . . . . . . . . 10 ((𝑥 = (𝑖 mod (𝑁𝐾)) ∧ 𝑦 = (𝑗 mod (𝑁𝐾))) → (𝑥 · 𝑦) = ((𝑖 mod (𝑁𝐾)) · (𝑗 mod (𝑁𝐾))))
5453oveq1d 7405 . . . . . . . . 9 ((𝑥 = (𝑖 mod (𝑁𝐾)) ∧ 𝑦 = (𝑗 mod (𝑁𝐾))) → ((𝑥 · 𝑦) mod (𝑁𝐾)) = (((𝑖 mod (𝑁𝐾)) · (𝑗 mod (𝑁𝐾))) mod (𝑁𝐾)))
55 elqaa.7 . . . . . . . . 9 𝑃 = (𝑥 ∈ V, 𝑦 ∈ V ↦ ((𝑥 · 𝑦) mod (𝑁𝐾)))
56 ovex 7423 . . . . . . . . 9 (((𝑖 mod (𝑁𝐾)) · (𝑗 mod (𝑁𝐾))) mod (𝑁𝐾)) ∈ V
5754, 55, 56ovmpoa 7547 . . . . . . . 8 (((𝑖 mod (𝑁𝐾)) ∈ V ∧ (𝑗 mod (𝑁𝐾)) ∈ V) → ((𝑖 mod (𝑁𝐾))𝑃(𝑗 mod (𝑁𝐾))) = (((𝑖 mod (𝑁𝐾)) · (𝑗 mod (𝑁𝐾))) mod (𝑁𝐾)))
5845, 49, 57mp2an 692 . . . . . . 7 ((𝑖 mod (𝑁𝐾))𝑃(𝑗 mod (𝑁𝐾))) = (((𝑖 mod (𝑁𝐾)) · (𝑗 mod (𝑁𝐾))) mod (𝑁𝐾))
5952, 58eqtrdi 2781 . . . . . 6 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑖)𝑃((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑗)) = (((𝑖 mod (𝑁𝐾)) · (𝑗 mod (𝑁𝐾))) mod (𝑁𝐾)))
60 oveq1 7397 . . . . . . . 8 (𝑘 = (𝑖 · 𝑗) → (𝑘 mod (𝑁𝐾)) = ((𝑖 · 𝑗) mod (𝑁𝐾)))
61 ovex 7423 . . . . . . . 8 ((𝑖 · 𝑗) mod (𝑁𝐾)) ∈ V
6260, 44, 61fvmpt 6971 . . . . . . 7 ((𝑖 · 𝑗) ∈ ℕ → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘(𝑖 · 𝑗)) = ((𝑖 · 𝑗) mod (𝑁𝐾)))
635, 62syl 17 . . . . . 6 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘(𝑖 · 𝑗)) = ((𝑖 · 𝑗) mod (𝑁𝐾)))
6442, 59, 633eqtr4rd 2776 . . . . 5 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘(𝑖 · 𝑗)) = (((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑖)𝑃((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑗)))
65 oveq1 7397 . . . . . . . . 9 (𝑘 = (𝑁𝑖) → (𝑘 mod (𝑁𝐾)) = ((𝑁𝑖) mod (𝑁𝐾)))
66 ovex 7423 . . . . . . . . 9 ((𝑁𝑖) mod (𝑁𝐾)) ∈ V
6765, 44, 66fvmpt 6971 . . . . . . . 8 ((𝑁𝑖) ∈ ℕ → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘(𝑁𝑖)) = ((𝑁𝑖) mod (𝑁𝐾)))
6814, 67syl 17 . . . . . . 7 (((𝜑𝐾 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘(𝑁𝑖)) = ((𝑁𝑖) mod (𝑁𝐾)))
69 fveq2 6861 . . . . . . . . . 10 (𝑘 = 𝑖 → (𝑁𝑘) = (𝑁𝑖))
7069oveq1d 7405 . . . . . . . . 9 (𝑘 = 𝑖 → ((𝑁𝑘) mod (𝑁𝐾)) = ((𝑁𝑖) mod (𝑁𝐾)))
71 eqid 2730 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾))) = (𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾)))
7270, 71, 66fvmpt 6971 . . . . . . . 8 (𝑖 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾)))‘𝑖) = ((𝑁𝑖) mod (𝑁𝐾)))
7372adantl 481 . . . . . . 7 (((𝜑𝐾 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾)))‘𝑖) = ((𝑁𝑖) mod (𝑁𝐾)))
7468, 73eqtr4d 2768 . . . . . 6 (((𝜑𝐾 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘(𝑁𝑖)) = ((𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾)))‘𝑖))
756, 74sylan2 593 . . . . 5 (((𝜑𝐾 ∈ ℕ0) ∧ 𝑖 ∈ (0...(deg‘𝐹))) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘(𝑁𝑖)) = ((𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾)))‘𝑖))
765, 15, 21, 64, 75seqhomo 14021 . . . 4 ((𝜑𝐾 ∈ ℕ0) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘(seq0( · , 𝑁)‘(deg‘𝐹))) = (seq0(𝑃, (𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾))))‘(deg‘𝐹)))
773, 76eqtrid 2777 . . 3 ((𝜑𝐾 ∈ ℕ0) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑅) = (seq0(𝑃, (𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾))))‘(deg‘𝐹)))
781, 77sylan2 593 . 2 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑅) = (seq0(𝑃, (𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾))))‘(deg‘𝐹)))
79 0zd 12548 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
804adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑖 · 𝑗) ∈ ℕ)
8119, 79, 13, 80seqf 13995 . . . . . . 7 (𝜑 → seq0( · , 𝑁):ℕ0⟶ℕ)
8281, 18ffvelcdmd 7060 . . . . . 6 (𝜑 → (seq0( · , 𝑁)‘(deg‘𝐹)) ∈ ℕ)
832, 82eqeltrid 2833 . . . . 5 (𝜑𝑅 ∈ ℕ)
8483adantr 480 . . . 4 ((𝜑𝐾 ∈ ℕ0) → 𝑅 ∈ ℕ)
85 oveq1 7397 . . . . 5 (𝑘 = 𝑅 → (𝑘 mod (𝑁𝐾)) = (𝑅 mod (𝑁𝐾)))
86 ovex 7423 . . . . 5 (𝑅 mod (𝑁𝐾)) ∈ V
8785, 44, 86fvmpt 6971 . . . 4 (𝑅 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑅) = (𝑅 mod (𝑁𝐾)))
8884, 87syl 17 . . 3 ((𝜑𝐾 ∈ ℕ0) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑅) = (𝑅 mod (𝑁𝐾)))
891, 88sylan2 593 . 2 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑅) = (𝑅 mod (𝑁𝐾)))
90 oveq12 7399 . . . . . . 7 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑥 · 𝑦) = (𝑖 · 𝑗))
9190oveq1d 7405 . . . . . 6 ((𝑥 = 𝑖𝑦 = 𝑗) → ((𝑥 · 𝑦) mod (𝑁𝐾)) = ((𝑖 · 𝑗) mod (𝑁𝐾)))
9291, 55, 61ovmpoa 7547 . . . . 5 ((𝑖 ∈ V ∧ 𝑗 ∈ V) → (𝑖𝑃𝑗) = ((𝑖 · 𝑗) mod (𝑁𝐾)))
9392el2v 3457 . . . 4 (𝑖𝑃𝑗) = ((𝑖 · 𝑗) mod (𝑁𝐾))
94 nn0mulcl 12485 . . . . . 6 ((𝑖 ∈ ℕ0𝑗 ∈ ℕ0) → (𝑖 · 𝑗) ∈ ℕ0)
9594nn0zd 12562 . . . . 5 ((𝑖 ∈ ℕ0𝑗 ∈ ℕ0) → (𝑖 · 𝑗) ∈ ℤ)
961, 25sylan2 593 . . . . 5 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (𝑁𝐾) ∈ ℕ)
97 zmodcl 13860 . . . . 5 (((𝑖 · 𝑗) ∈ ℤ ∧ (𝑁𝐾) ∈ ℕ) → ((𝑖 · 𝑗) mod (𝑁𝐾)) ∈ ℕ0)
9895, 96, 97syl2anr 597 . . . 4 (((𝜑𝐾 ∈ (0...(deg‘𝐹))) ∧ (𝑖 ∈ ℕ0𝑗 ∈ ℕ0)) → ((𝑖 · 𝑗) mod (𝑁𝐾)) ∈ ℕ0)
9993, 98eqeltrid 2833 . . 3 (((𝜑𝐾 ∈ (0...(deg‘𝐹))) ∧ (𝑖 ∈ ℕ0𝑗 ∈ ℕ0)) → (𝑖𝑃𝑗) ∈ ℕ0)
100 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝐵𝑘) = (𝐵𝑚))
101100oveq1d 7405 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → ((𝐵𝑘) · 𝑛) = ((𝐵𝑚) · 𝑛))
102101eleq1d 2814 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (((𝐵𝑘) · 𝑛) ∈ ℤ ↔ ((𝐵𝑚) · 𝑛) ∈ ℤ))
103102rabbidv 3416 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → {𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ} = {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ})
104103infeq1d 9436 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ))
105104cbvmptv 5214 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) = (𝑚 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ))
10611, 105eqtri 2753 . . . . . . . . . . 11 𝑁 = (𝑚 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ))
1077, 8, 9, 10, 106, 2elqaalem1 26234 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((𝑁𝑘) ∈ ℕ ∧ ((𝐵𝑘) · (𝑁𝑘)) ∈ ℤ))
108107simpld 494 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝑁𝑘) ∈ ℕ)
109108adantlr 715 . . . . . . . 8 (((𝜑𝐾 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑁𝑘) ∈ ℕ)
110109nnzd 12563 . . . . . . 7 (((𝜑𝐾 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑁𝑘) ∈ ℤ)
11125adantr 480 . . . . . . 7 (((𝜑𝐾 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑁𝐾) ∈ ℕ)
112110, 111zmodcld 13861 . . . . . 6 (((𝜑𝐾 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑁𝑘) mod (𝑁𝐾)) ∈ ℕ0)
113112fmpttd 7090 . . . . 5 ((𝜑𝐾 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾))):ℕ0⟶ℕ0)
1141, 113sylan2 593 . . . 4 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾))):ℕ0⟶ℕ0)
115 ffvelcdm 7056 . . . 4 (((𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾))):ℕ0⟶ℕ0𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾)))‘𝑖) ∈ ℕ0)
116114, 6, 115syl2an 596 . . 3 (((𝜑𝐾 ∈ (0...(deg‘𝐹))) ∧ 𝑖 ∈ (0...(deg‘𝐹))) → ((𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾)))‘𝑖) ∈ ℕ0)
117 c0ex 11175 . . . . 5 0 ∈ V
118 vex 3454 . . . . 5 𝑖 ∈ V
119 oveq12 7399 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑖) → (𝑥 · 𝑦) = (0 · 𝑖))
120119oveq1d 7405 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑖) → ((𝑥 · 𝑦) mod (𝑁𝐾)) = ((0 · 𝑖) mod (𝑁𝐾)))
121 ovex 7423 . . . . . 6 ((0 · 𝑖) mod (𝑁𝐾)) ∈ V
122120, 55, 121ovmpoa 7547 . . . . 5 ((0 ∈ V ∧ 𝑖 ∈ V) → (0𝑃𝑖) = ((0 · 𝑖) mod (𝑁𝐾)))
123117, 118, 122mp2an 692 . . . 4 (0𝑃𝑖) = ((0 · 𝑖) mod (𝑁𝐾))
124 nn0cn 12459 . . . . . . 7 (𝑖 ∈ ℕ0𝑖 ∈ ℂ)
125124mul02d 11379 . . . . . 6 (𝑖 ∈ ℕ0 → (0 · 𝑖) = 0)
126125oveq1d 7405 . . . . 5 (𝑖 ∈ ℕ0 → ((0 · 𝑖) mod (𝑁𝐾)) = (0 mod (𝑁𝐾)))
12796nnrpd 13000 . . . . . 6 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (𝑁𝐾) ∈ ℝ+)
128 0mod 13871 . . . . . 6 ((𝑁𝐾) ∈ ℝ+ → (0 mod (𝑁𝐾)) = 0)
129127, 128syl 17 . . . . 5 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (0 mod (𝑁𝐾)) = 0)
130126, 129sylan9eqr 2787 . . . 4 (((𝜑𝐾 ∈ (0...(deg‘𝐹))) ∧ 𝑖 ∈ ℕ0) → ((0 · 𝑖) mod (𝑁𝐾)) = 0)
131123, 130eqtrid 2777 . . 3 (((𝜑𝐾 ∈ (0...(deg‘𝐹))) ∧ 𝑖 ∈ ℕ0) → (0𝑃𝑖) = 0)
132 oveq12 7399 . . . . . . 7 ((𝑥 = 𝑖𝑦 = 0) → (𝑥 · 𝑦) = (𝑖 · 0))
133132oveq1d 7405 . . . . . 6 ((𝑥 = 𝑖𝑦 = 0) → ((𝑥 · 𝑦) mod (𝑁𝐾)) = ((𝑖 · 0) mod (𝑁𝐾)))
134 ovex 7423 . . . . . 6 ((𝑖 · 0) mod (𝑁𝐾)) ∈ V
135133, 55, 134ovmpoa 7547 . . . . 5 ((𝑖 ∈ V ∧ 0 ∈ V) → (𝑖𝑃0) = ((𝑖 · 0) mod (𝑁𝐾)))
136118, 117, 135mp2an 692 . . . 4 (𝑖𝑃0) = ((𝑖 · 0) mod (𝑁𝐾))
137124mul01d 11380 . . . . . 6 (𝑖 ∈ ℕ0 → (𝑖 · 0) = 0)
138137oveq1d 7405 . . . . 5 (𝑖 ∈ ℕ0 → ((𝑖 · 0) mod (𝑁𝐾)) = (0 mod (𝑁𝐾)))
139138, 129sylan9eqr 2787 . . . 4 (((𝜑𝐾 ∈ (0...(deg‘𝐹))) ∧ 𝑖 ∈ ℕ0) → ((𝑖 · 0) mod (𝑁𝐾)) = 0)
140136, 139eqtrid 2777 . . 3 (((𝜑𝐾 ∈ (0...(deg‘𝐹))) ∧ 𝑖 ∈ ℕ0) → (𝑖𝑃0) = 0)
141 simpr 484 . . 3 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → 𝐾 ∈ (0...(deg‘𝐹)))
14218adantr 480 . . 3 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (deg‘𝐹) ∈ ℕ0)
1431adantl 481 . . . . 5 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → 𝐾 ∈ ℕ0)
144 fveq2 6861 . . . . . . 7 (𝑘 = 𝐾 → (𝑁𝑘) = (𝑁𝐾))
145144oveq1d 7405 . . . . . 6 (𝑘 = 𝐾 → ((𝑁𝑘) mod (𝑁𝐾)) = ((𝑁𝐾) mod (𝑁𝐾)))
146 ovex 7423 . . . . . 6 ((𝑁𝐾) mod (𝑁𝐾)) ∈ V
147145, 71, 146fvmpt 6971 . . . . 5 (𝐾 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾)))‘𝐾) = ((𝑁𝐾) mod (𝑁𝐾)))
148143, 147syl 17 . . . 4 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → ((𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾)))‘𝐾) = ((𝑁𝐾) mod (𝑁𝐾)))
14996nncnd 12209 . . . . . . 7 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (𝑁𝐾) ∈ ℂ)
15096nnne0d 12243 . . . . . . 7 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (𝑁𝐾) ≠ 0)
151149, 150dividd 11963 . . . . . 6 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → ((𝑁𝐾) / (𝑁𝐾)) = 1)
152 1z 12570 . . . . . 6 1 ∈ ℤ
153151, 152eqeltrdi 2837 . . . . 5 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → ((𝑁𝐾) / (𝑁𝐾)) ∈ ℤ)
15496nnred 12208 . . . . . 6 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (𝑁𝐾) ∈ ℝ)
155 mod0 13845 . . . . . 6 (((𝑁𝐾) ∈ ℝ ∧ (𝑁𝐾) ∈ ℝ+) → (((𝑁𝐾) mod (𝑁𝐾)) = 0 ↔ ((𝑁𝐾) / (𝑁𝐾)) ∈ ℤ))
156154, 127, 155syl2anc 584 . . . . 5 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (((𝑁𝐾) mod (𝑁𝐾)) = 0 ↔ ((𝑁𝐾) / (𝑁𝐾)) ∈ ℤ))
157153, 156mpbird 257 . . . 4 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → ((𝑁𝐾) mod (𝑁𝐾)) = 0)
158148, 157eqtrd 2765 . . 3 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → ((𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾)))‘𝐾) = 0)
15999, 116, 131, 140, 141, 142, 158seqz 14022 . 2 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (seq0(𝑃, (𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾))))‘(deg‘𝐹)) = 0)
16078, 89, 1593eqtr3d 2773 1 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (𝑅 mod (𝑁𝐾)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  cdif 3914  {csn 4592  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  infcinf 9399  cc 11073  cr 11074  0cc0 11075  1c1 11076   · cmul 11080   < clt 11215   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  cuz 12800  cq 12914  +crp 12958  ...cfz 13475   mod cmo 13838  seqcseq 13973  0𝑝c0p 25577  Polycply 26096  coeffccoe 26098  degcdgr 26099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-0p 25578  df-ply 26100  df-coe 26102  df-dgr 26103
This theorem is referenced by:  elqaalem3  26236
  Copyright terms: Public domain W3C validator