Step | Hyp | Ref
| Expression |
1 | | elfznn0 13049 |
. . 3
⊢ (𝐾 ∈ (0...(deg‘𝐹)) → 𝐾 ∈
ℕ0) |
2 | | elqaa.6 |
. . . . 5
⊢ 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹)) |
3 | 2 | fveq2i 6661 |
. . . 4
⊢ ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾)))‘𝑅) = ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾)))‘(seq0( · , 𝑁)‘(deg‘𝐹))) |
4 | | nnmulcl 11698 |
. . . . . 6
⊢ ((𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑖 · 𝑗) ∈ ℕ) |
5 | 4 | adantl 485 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑖 · 𝑗) ∈ ℕ) |
6 | | elfznn0 13049 |
. . . . . 6
⊢ (𝑖 ∈ (0...(deg‘𝐹)) → 𝑖 ∈ ℕ0) |
7 | | elqaa.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℂ) |
8 | | elqaa.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℚ) ∖
{0𝑝})) |
9 | | elqaa.3 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘𝐴) = 0) |
10 | | elqaa.4 |
. . . . . . . . 9
⊢ 𝐵 = (coeff‘𝐹) |
11 | | elqaa.5 |
. . . . . . . . 9
⊢ 𝑁 = (𝑘 ∈ ℕ0 ↦
inf({𝑛 ∈ ℕ
∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, <
)) |
12 | 7, 8, 9, 10, 11, 2 | elqaalem1 25014 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑁‘𝑖) ∈ ℕ ∧ ((𝐵‘𝑖) · (𝑁‘𝑖)) ∈ ℤ)) |
13 | 12 | simpld 498 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑁‘𝑖) ∈ ℕ) |
14 | 13 | adantlr 714 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0)
→ (𝑁‘𝑖) ∈
ℕ) |
15 | 6, 14 | sylan2 595 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ 𝑖 ∈ (0...(deg‘𝐹))) → (𝑁‘𝑖) ∈ ℕ) |
16 | | eldifi 4032 |
. . . . . . . 8
⊢ (𝐹 ∈ ((Poly‘ℚ)
∖ {0𝑝}) → 𝐹 ∈
(Poly‘ℚ)) |
17 | | dgrcl 24929 |
. . . . . . . 8
⊢ (𝐹 ∈ (Poly‘ℚ)
→ (deg‘𝐹) ∈
ℕ0) |
18 | 8, 16, 17 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (deg‘𝐹) ∈
ℕ0) |
19 | | nn0uz 12320 |
. . . . . . 7
⊢
ℕ0 = (ℤ≥‘0) |
20 | 18, 19 | eleqtrdi 2862 |
. . . . . 6
⊢ (𝜑 → (deg‘𝐹) ∈
(ℤ≥‘0)) |
21 | 20 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) →
(deg‘𝐹) ∈
(ℤ≥‘0)) |
22 | | nnz 12043 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ℕ → 𝑖 ∈
ℤ) |
23 | 22 | ad2antrl 727 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝑖 ∈
ℤ) |
24 | 7, 8, 9, 10, 11, 2 | elqaalem1 25014 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → ((𝑁‘𝐾) ∈ ℕ ∧ ((𝐵‘𝐾) · (𝑁‘𝐾)) ∈ ℤ)) |
25 | 24 | simpld 498 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → (𝑁‘𝐾) ∈ ℕ) |
26 | 25 | adantr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑁‘𝐾) ∈ ℕ) |
27 | 23, 26 | zmodcld 13309 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑖 mod (𝑁‘𝐾)) ∈
ℕ0) |
28 | 27 | nn0zd 12124 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑖 mod (𝑁‘𝐾)) ∈ ℤ) |
29 | | nnz 12043 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℤ) |
30 | 29 | ad2antll 728 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝑗 ∈
ℤ) |
31 | 30, 26 | zmodcld 13309 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑗 mod (𝑁‘𝐾)) ∈
ℕ0) |
32 | 31 | nn0zd 12124 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑗 mod (𝑁‘𝐾)) ∈ ℤ) |
33 | 26 | nnrpd 12470 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑁‘𝐾) ∈
ℝ+) |
34 | | nnre 11681 |
. . . . . . . . 9
⊢ (𝑖 ∈ ℕ → 𝑖 ∈
ℝ) |
35 | 34 | ad2antrl 727 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝑖 ∈
ℝ) |
36 | | modabs2 13322 |
. . . . . . . 8
⊢ ((𝑖 ∈ ℝ ∧ (𝑁‘𝐾) ∈ ℝ+) → ((𝑖 mod (𝑁‘𝐾)) mod (𝑁‘𝐾)) = (𝑖 mod (𝑁‘𝐾))) |
37 | 35, 33, 36 | syl2anc 587 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ((𝑖 mod (𝑁‘𝐾)) mod (𝑁‘𝐾)) = (𝑖 mod (𝑁‘𝐾))) |
38 | | nnre 11681 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℝ) |
39 | 38 | ad2antll 728 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝑗 ∈
ℝ) |
40 | | modabs2 13322 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℝ ∧ (𝑁‘𝐾) ∈ ℝ+) → ((𝑗 mod (𝑁‘𝐾)) mod (𝑁‘𝐾)) = (𝑗 mod (𝑁‘𝐾))) |
41 | 39, 33, 40 | syl2anc 587 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ((𝑗 mod (𝑁‘𝐾)) mod (𝑁‘𝐾)) = (𝑗 mod (𝑁‘𝐾))) |
42 | 28, 23, 32, 30, 33, 37, 41 | modmul12d 13342 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) →
(((𝑖 mod (𝑁‘𝐾)) · (𝑗 mod (𝑁‘𝐾))) mod (𝑁‘𝐾)) = ((𝑖 · 𝑗) mod (𝑁‘𝐾))) |
43 | | oveq1 7157 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑖 → (𝑘 mod (𝑁‘𝐾)) = (𝑖 mod (𝑁‘𝐾))) |
44 | | eqid 2758 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾))) = (𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾))) |
45 | | ovex 7183 |
. . . . . . . . . 10
⊢ (𝑖 mod (𝑁‘𝐾)) ∈ V |
46 | 43, 44, 45 | fvmpt 6759 |
. . . . . . . . 9
⊢ (𝑖 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾)))‘𝑖) = (𝑖 mod (𝑁‘𝐾))) |
47 | 46 | ad2antrl 727 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾)))‘𝑖) = (𝑖 mod (𝑁‘𝐾))) |
48 | | oveq1 7157 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → (𝑘 mod (𝑁‘𝐾)) = (𝑗 mod (𝑁‘𝐾))) |
49 | | ovex 7183 |
. . . . . . . . . 10
⊢ (𝑗 mod (𝑁‘𝐾)) ∈ V |
50 | 48, 44, 49 | fvmpt 6759 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾)))‘𝑗) = (𝑗 mod (𝑁‘𝐾))) |
51 | 50 | ad2antll 728 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾)))‘𝑗) = (𝑗 mod (𝑁‘𝐾))) |
52 | 47, 51 | oveq12d 7168 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) →
(((𝑘 ∈ ℕ ↦
(𝑘 mod (𝑁‘𝐾)))‘𝑖)𝑃((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾)))‘𝑗)) = ((𝑖 mod (𝑁‘𝐾))𝑃(𝑗 mod (𝑁‘𝐾)))) |
53 | | oveq12 7159 |
. . . . . . . . . 10
⊢ ((𝑥 = (𝑖 mod (𝑁‘𝐾)) ∧ 𝑦 = (𝑗 mod (𝑁‘𝐾))) → (𝑥 · 𝑦) = ((𝑖 mod (𝑁‘𝐾)) · (𝑗 mod (𝑁‘𝐾)))) |
54 | 53 | oveq1d 7165 |
. . . . . . . . 9
⊢ ((𝑥 = (𝑖 mod (𝑁‘𝐾)) ∧ 𝑦 = (𝑗 mod (𝑁‘𝐾))) → ((𝑥 · 𝑦) mod (𝑁‘𝐾)) = (((𝑖 mod (𝑁‘𝐾)) · (𝑗 mod (𝑁‘𝐾))) mod (𝑁‘𝐾))) |
55 | | elqaa.7 |
. . . . . . . . 9
⊢ 𝑃 = (𝑥 ∈ V, 𝑦 ∈ V ↦ ((𝑥 · 𝑦) mod (𝑁‘𝐾))) |
56 | | ovex 7183 |
. . . . . . . . 9
⊢ (((𝑖 mod (𝑁‘𝐾)) · (𝑗 mod (𝑁‘𝐾))) mod (𝑁‘𝐾)) ∈ V |
57 | 54, 55, 56 | ovmpoa 7300 |
. . . . . . . 8
⊢ (((𝑖 mod (𝑁‘𝐾)) ∈ V ∧ (𝑗 mod (𝑁‘𝐾)) ∈ V) → ((𝑖 mod (𝑁‘𝐾))𝑃(𝑗 mod (𝑁‘𝐾))) = (((𝑖 mod (𝑁‘𝐾)) · (𝑗 mod (𝑁‘𝐾))) mod (𝑁‘𝐾))) |
58 | 45, 49, 57 | mp2an 691 |
. . . . . . 7
⊢ ((𝑖 mod (𝑁‘𝐾))𝑃(𝑗 mod (𝑁‘𝐾))) = (((𝑖 mod (𝑁‘𝐾)) · (𝑗 mod (𝑁‘𝐾))) mod (𝑁‘𝐾)) |
59 | 52, 58 | eqtrdi 2809 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) →
(((𝑘 ∈ ℕ ↦
(𝑘 mod (𝑁‘𝐾)))‘𝑖)𝑃((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾)))‘𝑗)) = (((𝑖 mod (𝑁‘𝐾)) · (𝑗 mod (𝑁‘𝐾))) mod (𝑁‘𝐾))) |
60 | | oveq1 7157 |
. . . . . . . 8
⊢ (𝑘 = (𝑖 · 𝑗) → (𝑘 mod (𝑁‘𝐾)) = ((𝑖 · 𝑗) mod (𝑁‘𝐾))) |
61 | | ovex 7183 |
. . . . . . . 8
⊢ ((𝑖 · 𝑗) mod (𝑁‘𝐾)) ∈ V |
62 | 60, 44, 61 | fvmpt 6759 |
. . . . . . 7
⊢ ((𝑖 · 𝑗) ∈ ℕ → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾)))‘(𝑖 · 𝑗)) = ((𝑖 · 𝑗) mod (𝑁‘𝐾))) |
63 | 5, 62 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾)))‘(𝑖 · 𝑗)) = ((𝑖 · 𝑗) mod (𝑁‘𝐾))) |
64 | 42, 59, 63 | 3eqtr4rd 2804 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾)))‘(𝑖 · 𝑗)) = (((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾)))‘𝑖)𝑃((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾)))‘𝑗))) |
65 | | oveq1 7157 |
. . . . . . . . 9
⊢ (𝑘 = (𝑁‘𝑖) → (𝑘 mod (𝑁‘𝐾)) = ((𝑁‘𝑖) mod (𝑁‘𝐾))) |
66 | | ovex 7183 |
. . . . . . . . 9
⊢ ((𝑁‘𝑖) mod (𝑁‘𝐾)) ∈ V |
67 | 65, 44, 66 | fvmpt 6759 |
. . . . . . . 8
⊢ ((𝑁‘𝑖) ∈ ℕ → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾)))‘(𝑁‘𝑖)) = ((𝑁‘𝑖) mod (𝑁‘𝐾))) |
68 | 14, 67 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0)
→ ((𝑘 ∈ ℕ
↦ (𝑘 mod (𝑁‘𝐾)))‘(𝑁‘𝑖)) = ((𝑁‘𝑖) mod (𝑁‘𝐾))) |
69 | | fveq2 6658 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑖 → (𝑁‘𝑘) = (𝑁‘𝑖)) |
70 | 69 | oveq1d 7165 |
. . . . . . . . 9
⊢ (𝑘 = 𝑖 → ((𝑁‘𝑘) mod (𝑁‘𝐾)) = ((𝑁‘𝑖) mod (𝑁‘𝐾))) |
71 | | eqid 2758 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
↦ ((𝑁‘𝑘) mod (𝑁‘𝐾))) = (𝑘 ∈ ℕ0 ↦ ((𝑁‘𝑘) mod (𝑁‘𝐾))) |
72 | 70, 71, 66 | fvmpt 6759 |
. . . . . . . 8
⊢ (𝑖 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ ((𝑁‘𝑘) mod (𝑁‘𝐾)))‘𝑖) = ((𝑁‘𝑖) mod (𝑁‘𝐾))) |
73 | 72 | adantl 485 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0)
→ ((𝑘 ∈
ℕ0 ↦ ((𝑁‘𝑘) mod (𝑁‘𝐾)))‘𝑖) = ((𝑁‘𝑖) mod (𝑁‘𝐾))) |
74 | 68, 73 | eqtr4d 2796 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0)
→ ((𝑘 ∈ ℕ
↦ (𝑘 mod (𝑁‘𝐾)))‘(𝑁‘𝑖)) = ((𝑘 ∈ ℕ0 ↦ ((𝑁‘𝑘) mod (𝑁‘𝐾)))‘𝑖)) |
75 | 6, 74 | sylan2 595 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ 𝑖 ∈ (0...(deg‘𝐹))) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾)))‘(𝑁‘𝑖)) = ((𝑘 ∈ ℕ0 ↦ ((𝑁‘𝑘) mod (𝑁‘𝐾)))‘𝑖)) |
76 | 5, 15, 21, 64, 75 | seqhomo 13467 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾)))‘(seq0( · , 𝑁)‘(deg‘𝐹))) = (seq0(𝑃, (𝑘 ∈ ℕ0 ↦ ((𝑁‘𝑘) mod (𝑁‘𝐾))))‘(deg‘𝐹))) |
77 | 3, 76 | syl5eq 2805 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾)))‘𝑅) = (seq0(𝑃, (𝑘 ∈ ℕ0 ↦ ((𝑁‘𝑘) mod (𝑁‘𝐾))))‘(deg‘𝐹))) |
78 | 1, 77 | sylan2 595 |
. 2
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾)))‘𝑅) = (seq0(𝑃, (𝑘 ∈ ℕ0 ↦ ((𝑁‘𝑘) mod (𝑁‘𝐾))))‘(deg‘𝐹))) |
79 | | 0zd 12032 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℤ) |
80 | 4 | adantl 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑖 · 𝑗) ∈ ℕ) |
81 | 19, 79, 13, 80 | seqf 13441 |
. . . . . . 7
⊢ (𝜑 → seq0( · , 𝑁):ℕ0⟶ℕ) |
82 | 81, 18 | ffvelrnd 6843 |
. . . . . 6
⊢ (𝜑 → (seq0( · , 𝑁)‘(deg‘𝐹)) ∈
ℕ) |
83 | 2, 82 | eqeltrid 2856 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ ℕ) |
84 | 83 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈
ℕ) |
85 | | oveq1 7157 |
. . . . 5
⊢ (𝑘 = 𝑅 → (𝑘 mod (𝑁‘𝐾)) = (𝑅 mod (𝑁‘𝐾))) |
86 | | ovex 7183 |
. . . . 5
⊢ (𝑅 mod (𝑁‘𝐾)) ∈ V |
87 | 85, 44, 86 | fvmpt 6759 |
. . . 4
⊢ (𝑅 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾)))‘𝑅) = (𝑅 mod (𝑁‘𝐾))) |
88 | 84, 87 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾)))‘𝑅) = (𝑅 mod (𝑁‘𝐾))) |
89 | 1, 88 | sylan2 595 |
. 2
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁‘𝐾)))‘𝑅) = (𝑅 mod (𝑁‘𝐾))) |
90 | | oveq12 7159 |
. . . . . . 7
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑥 · 𝑦) = (𝑖 · 𝑗)) |
91 | 90 | oveq1d 7165 |
. . . . . 6
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → ((𝑥 · 𝑦) mod (𝑁‘𝐾)) = ((𝑖 · 𝑗) mod (𝑁‘𝐾))) |
92 | 91, 55, 61 | ovmpoa 7300 |
. . . . 5
⊢ ((𝑖 ∈ V ∧ 𝑗 ∈ V) → (𝑖𝑃𝑗) = ((𝑖 · 𝑗) mod (𝑁‘𝐾))) |
93 | 92 | el2v 3417 |
. . . 4
⊢ (𝑖𝑃𝑗) = ((𝑖 · 𝑗) mod (𝑁‘𝐾)) |
94 | | nn0mulcl 11970 |
. . . . . 6
⊢ ((𝑖 ∈ ℕ0
∧ 𝑗 ∈
ℕ0) → (𝑖 · 𝑗) ∈
ℕ0) |
95 | 94 | nn0zd 12124 |
. . . . 5
⊢ ((𝑖 ∈ ℕ0
∧ 𝑗 ∈
ℕ0) → (𝑖 · 𝑗) ∈ ℤ) |
96 | 1, 25 | sylan2 595 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → (𝑁‘𝐾) ∈ ℕ) |
97 | | zmodcl 13308 |
. . . . 5
⊢ (((𝑖 · 𝑗) ∈ ℤ ∧ (𝑁‘𝐾) ∈ ℕ) → ((𝑖 · 𝑗) mod (𝑁‘𝐾)) ∈
ℕ0) |
98 | 95, 96, 97 | syl2anr 599 |
. . . 4
⊢ (((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) ∧ (𝑖 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0))
→ ((𝑖 · 𝑗) mod (𝑁‘𝐾)) ∈
ℕ0) |
99 | 93, 98 | eqeltrid 2856 |
. . 3
⊢ (((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) ∧ (𝑖 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0))
→ (𝑖𝑃𝑗) ∈
ℕ0) |
100 | | fveq2 6658 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑚 → (𝐵‘𝑘) = (𝐵‘𝑚)) |
101 | 100 | oveq1d 7165 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑚 → ((𝐵‘𝑘) · 𝑛) = ((𝐵‘𝑚) · 𝑛)) |
102 | 101 | eleq1d 2836 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑚 → (((𝐵‘𝑘) · 𝑛) ∈ ℤ ↔ ((𝐵‘𝑚) · 𝑛) ∈ ℤ)) |
103 | 102 | rabbidv 3392 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑚 → {𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ} = {𝑛 ∈ ℕ ∣ ((𝐵‘𝑚) · 𝑛) ∈ ℤ}) |
104 | 103 | infeq1d 8974 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑚 → inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < ) =
inf({𝑛 ∈ ℕ
∣ ((𝐵‘𝑚) · 𝑛) ∈ ℤ}, ℝ, <
)) |
105 | 104 | cbvmptv 5135 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
↦ inf({𝑛 ∈
ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) = (𝑚 ∈ ℕ0
↦ inf({𝑛 ∈
ℕ ∣ ((𝐵‘𝑚) · 𝑛) ∈ ℤ}, ℝ, <
)) |
106 | 11, 105 | eqtri 2781 |
. . . . . . . . . . 11
⊢ 𝑁 = (𝑚 ∈ ℕ0 ↦
inf({𝑛 ∈ ℕ
∣ ((𝐵‘𝑚) · 𝑛) ∈ ℤ}, ℝ, <
)) |
107 | 7, 8, 9, 10, 106, 2 | elqaalem1 25014 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑁‘𝑘) ∈ ℕ ∧ ((𝐵‘𝑘) · (𝑁‘𝑘)) ∈ ℤ)) |
108 | 107 | simpld 498 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑁‘𝑘) ∈ ℕ) |
109 | 108 | adantlr 714 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝑁‘𝑘) ∈
ℕ) |
110 | 109 | nnzd 12125 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝑁‘𝑘) ∈
ℤ) |
111 | 25 | adantr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝑁‘𝐾) ∈
ℕ) |
112 | 110, 111 | zmodcld 13309 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ((𝑁‘𝑘) mod (𝑁‘𝐾)) ∈
ℕ0) |
113 | 112 | fmpttd 6870 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → (𝑘 ∈ ℕ0
↦ ((𝑁‘𝑘) mod (𝑁‘𝐾))):ℕ0⟶ℕ0) |
114 | 1, 113 | sylan2 595 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → (𝑘 ∈ ℕ0 ↦ ((𝑁‘𝑘) mod (𝑁‘𝐾))):ℕ0⟶ℕ0) |
115 | | ffvelrn 6840 |
. . . 4
⊢ (((𝑘 ∈ ℕ0
↦ ((𝑁‘𝑘) mod (𝑁‘𝐾))):ℕ0⟶ℕ0
∧ 𝑖 ∈
ℕ0) → ((𝑘
∈ ℕ0 ↦ ((𝑁‘𝑘) mod (𝑁‘𝐾)))‘𝑖) ∈ ℕ0) |
116 | 114, 6, 115 | syl2an 598 |
. . 3
⊢ (((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) ∧ 𝑖 ∈ (0...(deg‘𝐹))) → ((𝑘 ∈ ℕ0 ↦ ((𝑁‘𝑘) mod (𝑁‘𝐾)))‘𝑖) ∈
ℕ0) |
117 | | c0ex 10673 |
. . . . 5
⊢ 0 ∈
V |
118 | | vex 3413 |
. . . . 5
⊢ 𝑖 ∈ V |
119 | | oveq12 7159 |
. . . . . . 7
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑖) → (𝑥 · 𝑦) = (0 · 𝑖)) |
120 | 119 | oveq1d 7165 |
. . . . . 6
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑖) → ((𝑥 · 𝑦) mod (𝑁‘𝐾)) = ((0 · 𝑖) mod (𝑁‘𝐾))) |
121 | | ovex 7183 |
. . . . . 6
⊢ ((0
· 𝑖) mod (𝑁‘𝐾)) ∈ V |
122 | 120, 55, 121 | ovmpoa 7300 |
. . . . 5
⊢ ((0
∈ V ∧ 𝑖 ∈ V)
→ (0𝑃𝑖) = ((0 · 𝑖) mod (𝑁‘𝐾))) |
123 | 117, 118,
122 | mp2an 691 |
. . . 4
⊢ (0𝑃𝑖) = ((0 · 𝑖) mod (𝑁‘𝐾)) |
124 | | nn0cn 11944 |
. . . . . . 7
⊢ (𝑖 ∈ ℕ0
→ 𝑖 ∈
ℂ) |
125 | 124 | mul02d 10876 |
. . . . . 6
⊢ (𝑖 ∈ ℕ0
→ (0 · 𝑖) =
0) |
126 | 125 | oveq1d 7165 |
. . . . 5
⊢ (𝑖 ∈ ℕ0
→ ((0 · 𝑖) mod
(𝑁‘𝐾)) = (0 mod (𝑁‘𝐾))) |
127 | 96 | nnrpd 12470 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → (𝑁‘𝐾) ∈
ℝ+) |
128 | | 0mod 13319 |
. . . . . 6
⊢ ((𝑁‘𝐾) ∈ ℝ+ → (0 mod
(𝑁‘𝐾)) = 0) |
129 | 127, 128 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → (0 mod (𝑁‘𝐾)) = 0) |
130 | 126, 129 | sylan9eqr 2815 |
. . . 4
⊢ (((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) ∧ 𝑖 ∈ ℕ0) → ((0
· 𝑖) mod (𝑁‘𝐾)) = 0) |
131 | 123, 130 | syl5eq 2805 |
. . 3
⊢ (((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) ∧ 𝑖 ∈ ℕ0) → (0𝑃𝑖) = 0) |
132 | | oveq12 7159 |
. . . . . . 7
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 0) → (𝑥 · 𝑦) = (𝑖 · 0)) |
133 | 132 | oveq1d 7165 |
. . . . . 6
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 0) → ((𝑥 · 𝑦) mod (𝑁‘𝐾)) = ((𝑖 · 0) mod (𝑁‘𝐾))) |
134 | | ovex 7183 |
. . . . . 6
⊢ ((𝑖 · 0) mod (𝑁‘𝐾)) ∈ V |
135 | 133, 55, 134 | ovmpoa 7300 |
. . . . 5
⊢ ((𝑖 ∈ V ∧ 0 ∈ V)
→ (𝑖𝑃0) = ((𝑖 · 0) mod (𝑁‘𝐾))) |
136 | 118, 117,
135 | mp2an 691 |
. . . 4
⊢ (𝑖𝑃0) = ((𝑖 · 0) mod (𝑁‘𝐾)) |
137 | 124 | mul01d 10877 |
. . . . . 6
⊢ (𝑖 ∈ ℕ0
→ (𝑖 · 0) =
0) |
138 | 137 | oveq1d 7165 |
. . . . 5
⊢ (𝑖 ∈ ℕ0
→ ((𝑖 · 0) mod
(𝑁‘𝐾)) = (0 mod (𝑁‘𝐾))) |
139 | 138, 129 | sylan9eqr 2815 |
. . . 4
⊢ (((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) ∧ 𝑖 ∈ ℕ0) → ((𝑖 · 0) mod (𝑁‘𝐾)) = 0) |
140 | 136, 139 | syl5eq 2805 |
. . 3
⊢ (((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) ∧ 𝑖 ∈ ℕ0) → (𝑖𝑃0) = 0) |
141 | | simpr 488 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → 𝐾 ∈ (0...(deg‘𝐹))) |
142 | 18 | adantr 484 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → (deg‘𝐹) ∈
ℕ0) |
143 | 1 | adantl 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → 𝐾 ∈
ℕ0) |
144 | | fveq2 6658 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (𝑁‘𝑘) = (𝑁‘𝐾)) |
145 | 144 | oveq1d 7165 |
. . . . . 6
⊢ (𝑘 = 𝐾 → ((𝑁‘𝑘) mod (𝑁‘𝐾)) = ((𝑁‘𝐾) mod (𝑁‘𝐾))) |
146 | | ovex 7183 |
. . . . . 6
⊢ ((𝑁‘𝐾) mod (𝑁‘𝐾)) ∈ V |
147 | 145, 71, 146 | fvmpt 6759 |
. . . . 5
⊢ (𝐾 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ ((𝑁‘𝑘) mod (𝑁‘𝐾)))‘𝐾) = ((𝑁‘𝐾) mod (𝑁‘𝐾))) |
148 | 143, 147 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → ((𝑘 ∈ ℕ0 ↦ ((𝑁‘𝑘) mod (𝑁‘𝐾)))‘𝐾) = ((𝑁‘𝐾) mod (𝑁‘𝐾))) |
149 | 96 | nncnd 11690 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → (𝑁‘𝐾) ∈ ℂ) |
150 | 96 | nnne0d 11724 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → (𝑁‘𝐾) ≠ 0) |
151 | 149, 150 | dividd 11452 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → ((𝑁‘𝐾) / (𝑁‘𝐾)) = 1) |
152 | | 1z 12051 |
. . . . . 6
⊢ 1 ∈
ℤ |
153 | 151, 152 | eqeltrdi 2860 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → ((𝑁‘𝐾) / (𝑁‘𝐾)) ∈ ℤ) |
154 | 96 | nnred 11689 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → (𝑁‘𝐾) ∈ ℝ) |
155 | | mod0 13293 |
. . . . . 6
⊢ (((𝑁‘𝐾) ∈ ℝ ∧ (𝑁‘𝐾) ∈ ℝ+) →
(((𝑁‘𝐾) mod (𝑁‘𝐾)) = 0 ↔ ((𝑁‘𝐾) / (𝑁‘𝐾)) ∈ ℤ)) |
156 | 154, 127,
155 | syl2anc 587 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → (((𝑁‘𝐾) mod (𝑁‘𝐾)) = 0 ↔ ((𝑁‘𝐾) / (𝑁‘𝐾)) ∈ ℤ)) |
157 | 153, 156 | mpbird 260 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → ((𝑁‘𝐾) mod (𝑁‘𝐾)) = 0) |
158 | 148, 157 | eqtrd 2793 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → ((𝑘 ∈ ℕ0 ↦ ((𝑁‘𝑘) mod (𝑁‘𝐾)))‘𝐾) = 0) |
159 | 99, 116, 131, 140, 141, 142, 158 | seqz 13468 |
. 2
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → (seq0(𝑃, (𝑘 ∈ ℕ0 ↦ ((𝑁‘𝑘) mod (𝑁‘𝐾))))‘(deg‘𝐹)) = 0) |
160 | 78, 89, 159 | 3eqtr3d 2801 |
1
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → (𝑅 mod (𝑁‘𝐾)) = 0) |