| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islln2 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a lattice line". (Contributed by NM, 23-Jun-2012.) |
| Ref | Expression |
|---|---|
| islln3.b | ⊢ 𝐵 = (Base‘𝐾) |
| islln3.j | ⊢ ∨ = (join‘𝐾) |
| islln3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| islln3.n | ⊢ 𝑁 = (LLines‘𝐾) |
| Ref | Expression |
|---|---|
| islln2 | ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islln3.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | islln3.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
| 3 | 1, 2 | llnbase 39628 | . . 3 ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐵) |
| 4 | 3 | pm4.71ri 560 | . 2 ⊢ (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝑁)) |
| 5 | islln3.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 6 | islln3.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | 1, 5, 6, 2 | islln3 39629 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
| 8 | 7 | pm5.32da 579 | . 2 ⊢ (𝐾 ∈ HL → ((𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝑁) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞))))) |
| 9 | 4, 8 | bitrid 283 | 1 ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 joincjn 18219 Atomscatm 39382 HLchlt 39469 LLinesclln 39610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-proset 18202 df-poset 18221 df-plt 18236 df-lub 18252 df-glb 18253 df-join 18254 df-meet 18255 df-p0 18331 df-lat 18340 df-clat 18407 df-oposet 39295 df-ol 39297 df-oml 39298 df-covers 39385 df-ats 39386 df-atl 39417 df-cvlat 39441 df-hlat 39470 df-llines 39617 |
| This theorem is referenced by: islpln5 39654 lplnnlelln 39662 llncvrlpln2 39676 2llnjN 39686 lvolnlelln 39703 |
| Copyright terms: Public domain | W3C validator |