| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islln2 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a lattice line". (Contributed by NM, 23-Jun-2012.) |
| Ref | Expression |
|---|---|
| islln3.b | ⊢ 𝐵 = (Base‘𝐾) |
| islln3.j | ⊢ ∨ = (join‘𝐾) |
| islln3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| islln3.n | ⊢ 𝑁 = (LLines‘𝐾) |
| Ref | Expression |
|---|---|
| islln2 | ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islln3.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | islln3.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
| 3 | 1, 2 | llnbase 39503 | . . 3 ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐵) |
| 4 | 3 | pm4.71ri 560 | . 2 ⊢ (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝑁)) |
| 5 | islln3.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 6 | islln3.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | 1, 5, 6, 2 | islln3 39504 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
| 8 | 7 | pm5.32da 579 | . 2 ⊢ (𝐾 ∈ HL → ((𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝑁) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞))))) |
| 9 | 4, 8 | bitrid 283 | 1 ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 joincjn 18272 Atomscatm 39256 HLchlt 39343 LLinesclln 39485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-lat 18391 df-clat 18458 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-llines 39492 |
| This theorem is referenced by: islpln5 39529 lplnnlelln 39537 llncvrlpln2 39551 2llnjN 39561 lvolnlelln 39578 |
| Copyright terms: Public domain | W3C validator |