Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islln2 Structured version   Visualization version   GIF version

Theorem islln2 35524
Description: The predicate "is a lattice line". (Contributed by NM, 23-Jun-2012.)
Hypotheses
Ref Expression
islln3.b 𝐵 = (Base‘𝐾)
islln3.j = (join‘𝐾)
islln3.a 𝐴 = (Atoms‘𝐾)
islln3.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
islln2 (𝐾 ∈ HL → (𝑋𝑁 ↔ (𝑋𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞)))))
Distinct variable groups:   𝑞,𝑝,𝐴   𝐵,𝑝,𝑞   𝐾,𝑝,𝑞   𝑋,𝑝,𝑞
Allowed substitution hints:   (𝑞,𝑝)   𝑁(𝑞,𝑝)

Proof of Theorem islln2
StepHypRef Expression
1 islln3.b . . . 4 𝐵 = (Base‘𝐾)
2 islln3.n . . . 4 𝑁 = (LLines‘𝐾)
31, 2llnbase 35522 . . 3 (𝑋𝑁𝑋𝐵)
43pm4.71ri 557 . 2 (𝑋𝑁 ↔ (𝑋𝐵𝑋𝑁))
5 islln3.j . . . 4 = (join‘𝐾)
6 islln3.a . . . 4 𝐴 = (Atoms‘𝐾)
71, 5, 6, 2islln3 35523 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞))))
87pm5.32da 575 . 2 (𝐾 ∈ HL → ((𝑋𝐵𝑋𝑁) ↔ (𝑋𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞)))))
94, 8syl5bb 275 1 (𝐾 ∈ HL → (𝑋𝑁 ↔ (𝑋𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wne 2969  wrex 3088  cfv 6099  (class class class)co 6876  Basecbs 16181  joincjn 17256  Atomscatm 35276  HLchlt 35363  LLinesclln 35504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-proset 17240  df-poset 17258  df-plt 17270  df-lub 17286  df-glb 17287  df-join 17288  df-meet 17289  df-p0 17351  df-lat 17358  df-clat 17420  df-oposet 35189  df-ol 35191  df-oml 35192  df-covers 35279  df-ats 35280  df-atl 35311  df-cvlat 35335  df-hlat 35364  df-llines 35511
This theorem is referenced by:  islpln5  35548  lplnnlelln  35556  llncvrlpln2  35570  2llnjN  35580  lvolnlelln  35597
  Copyright terms: Public domain W3C validator