Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islln2 Structured version   Visualization version   GIF version

Theorem islln2 39468
Description: The predicate "is a lattice line". (Contributed by NM, 23-Jun-2012.)
Hypotheses
Ref Expression
islln3.b 𝐵 = (Base‘𝐾)
islln3.j = (join‘𝐾)
islln3.a 𝐴 = (Atoms‘𝐾)
islln3.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
islln2 (𝐾 ∈ HL → (𝑋𝑁 ↔ (𝑋𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞)))))
Distinct variable groups:   𝑞,𝑝,𝐴   𝐵,𝑝,𝑞   𝐾,𝑝,𝑞   𝑋,𝑝,𝑞
Allowed substitution hints:   (𝑞,𝑝)   𝑁(𝑞,𝑝)

Proof of Theorem islln2
StepHypRef Expression
1 islln3.b . . . 4 𝐵 = (Base‘𝐾)
2 islln3.n . . . 4 𝑁 = (LLines‘𝐾)
31, 2llnbase 39466 . . 3 (𝑋𝑁𝑋𝐵)
43pm4.71ri 560 . 2 (𝑋𝑁 ↔ (𝑋𝐵𝑋𝑁))
5 islln3.j . . . 4 = (join‘𝐾)
6 islln3.a . . . 4 𝐴 = (Atoms‘𝐾)
71, 5, 6, 2islln3 39467 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞))))
87pm5.32da 578 . 2 (𝐾 ∈ HL → ((𝑋𝐵𝑋𝑁) ↔ (𝑋𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞)))))
94, 8bitrid 283 1 (𝐾 ∈ HL → (𝑋𝑁 ↔ (𝑋𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  cfv 6573  (class class class)co 7448  Basecbs 17258  joincjn 18381  Atomscatm 39219  HLchlt 39306  LLinesclln 39448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455
This theorem is referenced by:  islpln5  39492  lplnnlelln  39500  llncvrlpln2  39514  2llnjN  39524  lvolnlelln  39541
  Copyright terms: Public domain W3C validator