Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islln2 Structured version   Visualization version   GIF version

Theorem islln2 39630
Description: The predicate "is a lattice line". (Contributed by NM, 23-Jun-2012.)
Hypotheses
Ref Expression
islln3.b 𝐵 = (Base‘𝐾)
islln3.j = (join‘𝐾)
islln3.a 𝐴 = (Atoms‘𝐾)
islln3.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
islln2 (𝐾 ∈ HL → (𝑋𝑁 ↔ (𝑋𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞)))))
Distinct variable groups:   𝑞,𝑝,𝐴   𝐵,𝑝,𝑞   𝐾,𝑝,𝑞   𝑋,𝑝,𝑞
Allowed substitution hints:   (𝑞,𝑝)   𝑁(𝑞,𝑝)

Proof of Theorem islln2
StepHypRef Expression
1 islln3.b . . . 4 𝐵 = (Base‘𝐾)
2 islln3.n . . . 4 𝑁 = (LLines‘𝐾)
31, 2llnbase 39628 . . 3 (𝑋𝑁𝑋𝐵)
43pm4.71ri 560 . 2 (𝑋𝑁 ↔ (𝑋𝐵𝑋𝑁))
5 islln3.j . . . 4 = (join‘𝐾)
6 islln3.a . . . 4 𝐴 = (Atoms‘𝐾)
71, 5, 6, 2islln3 39629 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞))))
87pm5.32da 579 . 2 (𝐾 ∈ HL → ((𝑋𝐵𝑋𝑁) ↔ (𝑋𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞)))))
94, 8bitrid 283 1 (𝐾 ∈ HL → (𝑋𝑁 ↔ (𝑋𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wrex 3057  cfv 6486  (class class class)co 7352  Basecbs 17122  joincjn 18219  Atomscatm 39382  HLchlt 39469  LLinesclln 39610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-proset 18202  df-poset 18221  df-plt 18236  df-lub 18252  df-glb 18253  df-join 18254  df-meet 18255  df-p0 18331  df-lat 18340  df-clat 18407  df-oposet 39295  df-ol 39297  df-oml 39298  df-covers 39385  df-ats 39386  df-atl 39417  df-cvlat 39441  df-hlat 39470  df-llines 39617
This theorem is referenced by:  islpln5  39654  lplnnlelln  39662  llncvrlpln2  39676  2llnjN  39686  lvolnlelln  39703
  Copyright terms: Public domain W3C validator