MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrm Structured version   Visualization version   GIF version

Theorem metnrm 24898
Description: A metric space is normal. (Contributed by Jeff Hankins, 31-Aug-2013.) (Revised by Mario Carneiro, 5-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.)
Hypothesis
Ref Expression
metnrm.j 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
metnrm (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Nrm)

Proof of Theorem metnrm
Dummy variables 𝑡 𝑠 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metnrm.j . . 3 𝐽 = (MetOpen‘𝐷)
21mopntop 24466 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
3 eqid 2735 . . . . 5 (𝑢𝑋 ↦ inf(ran (𝑣𝑥 ↦ (𝑢𝐷𝑣)), ℝ*, < )) = (𝑢𝑋 ↦ inf(ran (𝑣𝑥 ↦ (𝑢𝐷𝑣)), ℝ*, < ))
4 simp1 1135 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑦 ∈ (Clsd‘𝐽)) ∧ (𝑥𝑦) = ∅) → 𝐷 ∈ (∞Met‘𝑋))
5 simp2l 1198 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑦 ∈ (Clsd‘𝐽)) ∧ (𝑥𝑦) = ∅) → 𝑥 ∈ (Clsd‘𝐽))
6 simp2r 1199 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑦 ∈ (Clsd‘𝐽)) ∧ (𝑥𝑦) = ∅) → 𝑦 ∈ (Clsd‘𝐽))
7 simp3 1137 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑦 ∈ (Clsd‘𝐽)) ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) = ∅)
8 eqid 2735 . . . . 5 𝑠𝑦 (𝑠(ball‘𝐷)(if(1 ≤ ((𝑢𝑋 ↦ inf(ran (𝑣𝑥 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑠), 1, ((𝑢𝑋 ↦ inf(ran (𝑣𝑥 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑠)) / 2)) = 𝑠𝑦 (𝑠(ball‘𝐷)(if(1 ≤ ((𝑢𝑋 ↦ inf(ran (𝑣𝑥 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑠), 1, ((𝑢𝑋 ↦ inf(ran (𝑣𝑥 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑠)) / 2))
9 eqid 2735 . . . . 5 (𝑢𝑋 ↦ inf(ran (𝑣𝑦 ↦ (𝑢𝐷𝑣)), ℝ*, < )) = (𝑢𝑋 ↦ inf(ran (𝑣𝑦 ↦ (𝑢𝐷𝑣)), ℝ*, < ))
10 eqid 2735 . . . . 5 𝑡𝑥 (𝑡(ball‘𝐷)(if(1 ≤ ((𝑢𝑋 ↦ inf(ran (𝑣𝑦 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑡), 1, ((𝑢𝑋 ↦ inf(ran (𝑣𝑦 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑡)) / 2)) = 𝑡𝑥 (𝑡(ball‘𝐷)(if(1 ≤ ((𝑢𝑋 ↦ inf(ran (𝑣𝑦 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑡), 1, ((𝑢𝑋 ↦ inf(ran (𝑣𝑦 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑡)) / 2))
113, 1, 4, 5, 6, 7, 8, 9, 10metnrmlem3 24897 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑦 ∈ (Clsd‘𝐽)) ∧ (𝑥𝑦) = ∅) → ∃𝑧𝐽𝑤𝐽 (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))
12113expia 1120 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑦 ∈ (Clsd‘𝐽))) → ((𝑥𝑦) = ∅ → ∃𝑧𝐽𝑤𝐽 (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅)))
1312ralrimivva 3200 . 2 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥 ∈ (Clsd‘𝐽)∀𝑦 ∈ (Clsd‘𝐽)((𝑥𝑦) = ∅ → ∃𝑧𝐽𝑤𝐽 (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅)))
14 isnrm3 23383 . 2 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ (Clsd‘𝐽)∀𝑦 ∈ (Clsd‘𝐽)((𝑥𝑦) = ∅ → ∃𝑧𝐽𝑤𝐽 (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))))
152, 13, 14sylanbrc 583 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Nrm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  cin 3962  wss 3963  c0 4339  ifcif 4531   ciun 4996   class class class wbr 5148  cmpt 5231  ran crn 5690  cfv 6563  (class class class)co 7431  infcinf 9479  1c1 11154  *cxr 11292   < clt 11293  cle 11294   / cdiv 11918  2c2 12319  ∞Metcxmet 21367  ballcbl 21369  MetOpencmopn 21372  Topctop 22915  Clsdccld 23040  Nrmcnrm 23334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-ec 8746  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-icc 13391  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nrm 23341
This theorem is referenced by:  metreg  24899
  Copyright terms: Public domain W3C validator