![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metnrm | Structured version Visualization version GIF version |
Description: A metric space is normal. (Contributed by Jeff Hankins, 31-Aug-2013.) (Revised by Mario Carneiro, 5-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.) |
Ref | Expression |
---|---|
metnrm.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
metnrm | ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Nrm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metnrm.j | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
2 | 1 | mopntop 24471 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
3 | eqid 2740 | . . . . 5 ⊢ (𝑢 ∈ 𝑋 ↦ inf(ran (𝑣 ∈ 𝑥 ↦ (𝑢𝐷𝑣)), ℝ*, < )) = (𝑢 ∈ 𝑋 ↦ inf(ran (𝑣 ∈ 𝑥 ↦ (𝑢𝐷𝑣)), ℝ*, < )) | |
4 | simp1 1136 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑦 ∈ (Clsd‘𝐽)) ∧ (𝑥 ∩ 𝑦) = ∅) → 𝐷 ∈ (∞Met‘𝑋)) | |
5 | simp2l 1199 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑦 ∈ (Clsd‘𝐽)) ∧ (𝑥 ∩ 𝑦) = ∅) → 𝑥 ∈ (Clsd‘𝐽)) | |
6 | simp2r 1200 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑦 ∈ (Clsd‘𝐽)) ∧ (𝑥 ∩ 𝑦) = ∅) → 𝑦 ∈ (Clsd‘𝐽)) | |
7 | simp3 1138 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑦 ∈ (Clsd‘𝐽)) ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∩ 𝑦) = ∅) | |
8 | eqid 2740 | . . . . 5 ⊢ ∪ 𝑠 ∈ 𝑦 (𝑠(ball‘𝐷)(if(1 ≤ ((𝑢 ∈ 𝑋 ↦ inf(ran (𝑣 ∈ 𝑥 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑠), 1, ((𝑢 ∈ 𝑋 ↦ inf(ran (𝑣 ∈ 𝑥 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑠)) / 2)) = ∪ 𝑠 ∈ 𝑦 (𝑠(ball‘𝐷)(if(1 ≤ ((𝑢 ∈ 𝑋 ↦ inf(ran (𝑣 ∈ 𝑥 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑠), 1, ((𝑢 ∈ 𝑋 ↦ inf(ran (𝑣 ∈ 𝑥 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑠)) / 2)) | |
9 | eqid 2740 | . . . . 5 ⊢ (𝑢 ∈ 𝑋 ↦ inf(ran (𝑣 ∈ 𝑦 ↦ (𝑢𝐷𝑣)), ℝ*, < )) = (𝑢 ∈ 𝑋 ↦ inf(ran (𝑣 ∈ 𝑦 ↦ (𝑢𝐷𝑣)), ℝ*, < )) | |
10 | eqid 2740 | . . . . 5 ⊢ ∪ 𝑡 ∈ 𝑥 (𝑡(ball‘𝐷)(if(1 ≤ ((𝑢 ∈ 𝑋 ↦ inf(ran (𝑣 ∈ 𝑦 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑡), 1, ((𝑢 ∈ 𝑋 ↦ inf(ran (𝑣 ∈ 𝑦 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑡)) / 2)) = ∪ 𝑡 ∈ 𝑥 (𝑡(ball‘𝐷)(if(1 ≤ ((𝑢 ∈ 𝑋 ↦ inf(ran (𝑣 ∈ 𝑦 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑡), 1, ((𝑢 ∈ 𝑋 ↦ inf(ran (𝑣 ∈ 𝑦 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑡)) / 2)) | |
11 | 3, 1, 4, 5, 6, 7, 8, 9, 10 | metnrmlem3 24902 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑦 ∈ (Clsd‘𝐽)) ∧ (𝑥 ∩ 𝑦) = ∅) → ∃𝑧 ∈ 𝐽 ∃𝑤 ∈ 𝐽 (𝑥 ⊆ 𝑧 ∧ 𝑦 ⊆ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅)) |
12 | 11 | 3expia 1121 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑦 ∈ (Clsd‘𝐽))) → ((𝑥 ∩ 𝑦) = ∅ → ∃𝑧 ∈ 𝐽 ∃𝑤 ∈ 𝐽 (𝑥 ⊆ 𝑧 ∧ 𝑦 ⊆ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅))) |
13 | 12 | ralrimivva 3208 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥 ∈ (Clsd‘𝐽)∀𝑦 ∈ (Clsd‘𝐽)((𝑥 ∩ 𝑦) = ∅ → ∃𝑧 ∈ 𝐽 ∃𝑤 ∈ 𝐽 (𝑥 ⊆ 𝑧 ∧ 𝑦 ⊆ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅))) |
14 | isnrm3 23388 | . 2 ⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ (Clsd‘𝐽)∀𝑦 ∈ (Clsd‘𝐽)((𝑥 ∩ 𝑦) = ∅ → ∃𝑧 ∈ 𝐽 ∃𝑤 ∈ 𝐽 (𝑥 ⊆ 𝑧 ∧ 𝑦 ⊆ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅)))) | |
15 | 2, 13, 14 | sylanbrc 582 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Nrm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 ifcif 4548 ∪ ciun 5015 class class class wbr 5166 ↦ cmpt 5249 ran crn 5701 ‘cfv 6573 (class class class)co 7448 infcinf 9510 1c1 11185 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 / cdiv 11947 2c2 12348 ∞Metcxmet 21372 ballcbl 21374 MetOpencmopn 21377 Topctop 22920 Clsdccld 23045 Nrmcnrm 23339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-ec 8765 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-icc 13414 df-topgen 17503 df-psmet 21379 df-xmet 21380 df-bl 21382 df-mopn 21383 df-top 22921 df-topon 22938 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nrm 23346 |
This theorem is referenced by: metreg 24904 |
Copyright terms: Public domain | W3C validator |