![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lelttr | Structured version Visualization version GIF version |
Description: Transitive law. (Contributed by NM, 23-May-1999.) |
Ref | Expression |
---|---|
lelttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leloe 10580 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | |
2 | 1 | 3adant3 1125 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
3 | lttr 10570 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
4 | 3 | expd 416 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
5 | breq1 4971 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐶 ↔ 𝐵 < 𝐶)) | |
6 | 5 | biimprd 249 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶)) |
7 | 6 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 = 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
8 | 4, 7 | jaod 854 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵) → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
9 | 2, 8 | sylbid 241 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
10 | 9 | impd 411 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∨ wo 842 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 class class class wbr 4968 ℝcr 10389 < clt 10528 ≤ cle 10529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-resscn 10447 ax-pre-lttri 10464 ax-pre-lttrn 10465 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-br 4969 df-opab 5031 df-mpt 5048 df-id 5355 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 |
This theorem is referenced by: letr 10587 lelttri 10620 lelttrd 10651 letrp1 11338 ltmul12a 11350 ledivp1 11396 supmul1 11464 bndndx 11750 uzind 11928 fnn0ind 11935 rpnnen1lem5 12234 xrinfmsslem 12555 elfzo0z 12933 nn0p1elfzo 12934 fzofzim 12938 elfzodifsumelfzo 12957 flge 13029 flflp1 13031 flltdivnn0lt 13057 modfzo0difsn 13165 fsequb 13197 expnlbnd2 13449 ccat2s1fvw 13840 swrdswrd 13907 pfxccatin12lem3 13934 repswswrd 13986 caubnd2 14555 caubnd 14556 mulcn2 14790 cn1lem 14792 rlimo1 14811 o1rlimmul 14813 climsqz 14835 climsqz2 14836 rlimsqzlem 14843 climsup 14864 caucvgrlem2 14869 iseralt 14879 cvgcmp 15008 cvgcmpce 15010 ruclem3 15423 ruclem12 15431 ltoddhalfle 15547 algcvgblem 15754 ncoprmlnprm 15901 pclem 16008 infpn2 16082 gsummoncoe1 20159 mp2pm2mplem4 21105 metss2lem 22808 ngptgp 22932 nghmcn 23041 iocopnst 23231 ovollb2lem 23776 ovolicc2lem4 23808 volcn 23894 ismbf3d 23942 dvcnvrelem1 24301 dvfsumrlim 24315 ulmcn 24674 mtest 24679 logdivlti 24888 isosctrlem1 25081 ftalem2 25337 chtub 25474 bposlem6 25551 gausslemma2dlem2 25629 chtppilim 25737 dchrisumlem3 25753 pntlem3 25871 clwlkclwwlklem2a 27462 vacn 28158 nmcvcn 28159 blocni 28269 chscllem2 29102 lnconi 29497 staddi 29710 stadd3i 29712 ltflcei 34432 poimirlem29 34473 geomcau 34587 heibor1lem 34640 bfplem2 34654 rrncmslem 34663 climinf 41450 leltletr 43031 zm1nn 43040 iccpartigtl 43087 tgoldbach 43486 ply1mulgsumlem2 43943 difmodm1lt 44085 |
Copyright terms: Public domain | W3C validator |