![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lelttr | Structured version Visualization version GIF version |
Description: Transitive law. (Contributed by NM, 23-May-1999.) |
Ref | Expression |
---|---|
lelttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leloe 11242 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | |
2 | 1 | 3adant3 1133 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
3 | lttr 11232 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
4 | 3 | expd 417 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
5 | breq1 5109 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐶 ↔ 𝐵 < 𝐶)) | |
6 | 5 | biimprd 248 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶)) |
7 | 6 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 = 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
8 | 4, 7 | jaod 858 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵) → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
9 | 2, 8 | sylbid 239 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
10 | 9 | impd 412 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 class class class wbr 5106 ℝcr 11051 < clt 11190 ≤ cle 11191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11109 ax-pre-lttri 11126 ax-pre-lttrn 11127 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 |
This theorem is referenced by: leltletr 11247 letr 11250 lelttri 11283 lelttrd 11314 letrp1 12000 ltmul12a 12012 ledivp1 12058 supmul1 12125 bndndx 12413 uzind 12596 fnn0ind 12603 rpnnen1lem5 12907 xrinfmsslem 13228 elfzo0z 13615 nn0p1elfzo 13616 fzofzim 13620 elfzodifsumelfzo 13639 flge 13711 flflp1 13713 flltdivnn0lt 13739 modfzo0difsn 13849 fsequb 13881 expnlbnd2 14138 ccat2s1fvw 14527 swrdswrd 14594 pfxccatin12lem3 14621 repswswrd 14673 caubnd2 15243 caubnd 15244 mulcn2 15479 cn1lem 15481 rlimo1 15500 o1rlimmul 15502 climsqz 15524 climsqz2 15525 rlimsqzlem 15534 climsup 15555 caucvgrlem2 15560 iseralt 15570 cvgcmp 15702 cvgcmpce 15704 ruclem3 16116 ruclem12 16124 ltoddhalfle 16244 algcvgblem 16454 ncoprmlnprm 16604 pclem 16711 infpn2 16786 gsummoncoe1 21678 mp2pm2mplem4 22161 metss2lem 23870 ngptgp 23995 nghmcn 24112 iocopnst 24306 ovollb2lem 24855 ovolicc2lem4 24887 volcn 24973 ismbf3d 25021 dvcnvrelem1 25384 dvfsumrlim 25398 ulmcn 25761 mtest 25766 logdivlti 25978 isosctrlem1 26171 ftalem2 26426 chtub 26563 bposlem6 26640 gausslemma2dlem2 26718 chtppilim 26826 dchrisumlem3 26842 pntlem3 26960 clwlkclwwlklem2a 28945 vacn 29639 nmcvcn 29640 blocni 29750 chscllem2 30583 lnconi 30978 staddi 31191 stadd3i 31193 ltflcei 36069 poimirlem29 36110 geomcau 36221 heibor1lem 36271 bfplem2 36285 rrncmslem 36294 climinf 43854 zm1nn 45541 iccpartigtl 45622 tgoldbach 46016 ply1mulgsumlem2 46475 difmodm1lt 46615 |
Copyright terms: Public domain | W3C validator |