MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lelttr Structured version   Visualization version   GIF version

Theorem lelttr 11203
Description: Transitive law. (Contributed by NM, 23-May-1999.)
Assertion
Ref Expression
lelttr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))

Proof of Theorem lelttr
StepHypRef Expression
1 leloe 11199 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
213adant3 1132 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
3 lttr 11189 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
43expd 415 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐵 < 𝐶𝐴 < 𝐶)))
5 breq1 5092 . . . . . 6 (𝐴 = 𝐵 → (𝐴 < 𝐶𝐵 < 𝐶))
65biimprd 248 . . . . 5 (𝐴 = 𝐵 → (𝐵 < 𝐶𝐴 < 𝐶))
76a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 = 𝐵 → (𝐵 < 𝐶𝐴 < 𝐶)))
84, 7jaod 859 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐴 = 𝐵) → (𝐵 < 𝐶𝐴 < 𝐶)))
92, 8sylbid 240 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐵 → (𝐵 < 𝐶𝐴 < 𝐶)))
109impd 410 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5089  cr 11005   < clt 11146  cle 11147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152
This theorem is referenced by:  leltletr  11204  letr  11207  lelttri  11240  lelttrd  11271  letrp1  11965  ltmul12a  11977  ledivp1  12024  supmul1  12091  bndndx  12380  uzind  12565  fnn0ind  12572  rpnnen1lem5  12879  xrinfmsslem  13207  elfzo0z  13601  nn0p1elfzo  13602  fzofzim  13609  elfzodifsumelfzo  13631  flge  13709  flflp1  13711  flltdivnn0lt  13737  modfzo0difsn  13850  fsequb  13882  expnlbnd2  14141  ccat2s1fvw  14546  swrdswrd  14612  pfxccatin12lem3  14639  repswswrd  14691  caubnd2  15265  caubnd  15266  mulcn2  15503  cn1lem  15505  rlimo1  15524  o1rlimmul  15526  climsqz  15548  climsqz2  15549  rlimsqzlem  15556  climsup  15577  caucvgrlem2  15582  iseralt  15592  cvgcmp  15723  cvgcmpce  15725  ruclem3  16142  ruclem12  16150  ltoddhalfle  16272  algcvgblem  16488  ncoprmlnprm  16639  pclem  16750  infpn2  16825  gsummoncoe1  22223  mp2pm2mplem4  22724  metss2lem  24426  ngptgp  24551  nghmcn  24660  iocopnst  24864  ovollb2lem  25416  ovolicc2lem4  25448  volcn  25534  ismbf3d  25582  dvcnvrelem1  25949  dvfsumrlim  25965  ulmcn  26335  mtest  26340  logdivlti  26556  isosctrlem1  26755  ftalem2  27011  chtub  27150  bposlem6  27227  gausslemma2dlem2  27305  chtppilim  27413  dchrisumlem3  27429  pntlem3  27547  clwlkclwwlklem2a  29978  vacn  30674  nmcvcn  30675  blocni  30785  chscllem2  31618  lnconi  32013  staddi  32226  stadd3i  32228  ltflcei  37656  poimirlem29  37697  geomcau  37807  heibor1lem  37857  bfplem2  37871  rrncmslem  37880  climinf  45654  zm1nn  47341  iccpartigtl  47462  tgoldbach  47856  ply1mulgsumlem2  48427
  Copyright terms: Public domain W3C validator