| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lelttr | Structured version Visualization version GIF version | ||
| Description: Transitive law. (Contributed by NM, 23-May-1999.) |
| Ref | Expression |
|---|---|
| lelttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leloe 11202 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | |
| 2 | 1 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
| 3 | lttr 11192 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 4 | 3 | expd 415 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
| 5 | breq1 5095 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐶 ↔ 𝐵 < 𝐶)) | |
| 6 | 5 | biimprd 248 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶)) |
| 7 | 6 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 = 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
| 8 | 4, 7 | jaod 859 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵) → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
| 9 | 2, 8 | sylbid 240 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
| 10 | 9 | impd 410 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ℝcr 11008 < clt 11149 ≤ cle 11150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 |
| This theorem is referenced by: leltletr 11207 letr 11210 lelttri 11243 lelttrd 11274 letrp1 11968 ltmul12a 11980 ledivp1 12027 supmul1 12094 bndndx 12383 uzind 12568 fnn0ind 12575 rpnnen1lem5 12882 xrinfmsslem 13210 elfzo0z 13604 nn0p1elfzo 13605 fzofzim 13612 elfzodifsumelfzo 13634 flge 13709 flflp1 13711 flltdivnn0lt 13737 modfzo0difsn 13850 fsequb 13882 expnlbnd2 14141 ccat2s1fvw 14545 swrdswrd 14611 pfxccatin12lem3 14638 repswswrd 14690 caubnd2 15265 caubnd 15266 mulcn2 15503 cn1lem 15505 rlimo1 15524 o1rlimmul 15526 climsqz 15548 climsqz2 15549 rlimsqzlem 15556 climsup 15577 caucvgrlem2 15582 iseralt 15592 cvgcmp 15723 cvgcmpce 15725 ruclem3 16142 ruclem12 16150 ltoddhalfle 16272 algcvgblem 16488 ncoprmlnprm 16639 pclem 16750 infpn2 16825 gsummoncoe1 22193 mp2pm2mplem4 22694 metss2lem 24397 ngptgp 24522 nghmcn 24631 iocopnst 24835 ovollb2lem 25387 ovolicc2lem4 25419 volcn 25505 ismbf3d 25553 dvcnvrelem1 25920 dvfsumrlim 25936 ulmcn 26306 mtest 26311 logdivlti 26527 isosctrlem1 26726 ftalem2 26982 chtub 27121 bposlem6 27198 gausslemma2dlem2 27276 chtppilim 27384 dchrisumlem3 27400 pntlem3 27518 clwlkclwwlklem2a 29942 vacn 30638 nmcvcn 30639 blocni 30749 chscllem2 31582 lnconi 31977 staddi 32190 stadd3i 32192 ltflcei 37588 poimirlem29 37629 geomcau 37739 heibor1lem 37789 bfplem2 37803 rrncmslem 37812 climinf 45587 zm1nn 47286 iccpartigtl 47407 tgoldbach 47801 ply1mulgsumlem2 48372 |
| Copyright terms: Public domain | W3C validator |