![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lelttr | Structured version Visualization version GIF version |
Description: Transitive law. (Contributed by NM, 23-May-1999.) |
Ref | Expression |
---|---|
lelttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leloe 11296 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | |
2 | 1 | 3adant3 1133 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
3 | lttr 11286 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
4 | 3 | expd 417 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
5 | breq1 5150 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐶 ↔ 𝐵 < 𝐶)) | |
6 | 5 | biimprd 247 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶)) |
7 | 6 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 = 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
8 | 4, 7 | jaod 858 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵) → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
9 | 2, 8 | sylbid 239 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
10 | 9 | impd 412 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 class class class wbr 5147 ℝcr 11105 < clt 11244 ≤ cle 11245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-resscn 11163 ax-pre-lttri 11180 ax-pre-lttrn 11181 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 |
This theorem is referenced by: leltletr 11301 letr 11304 lelttri 11337 lelttrd 11368 letrp1 12054 ltmul12a 12066 ledivp1 12112 supmul1 12179 bndndx 12467 uzind 12650 fnn0ind 12657 rpnnen1lem5 12961 xrinfmsslem 13283 elfzo0z 13670 nn0p1elfzo 13671 fzofzim 13675 elfzodifsumelfzo 13694 flge 13766 flflp1 13768 flltdivnn0lt 13794 modfzo0difsn 13904 fsequb 13936 expnlbnd2 14193 ccat2s1fvw 14584 swrdswrd 14651 pfxccatin12lem3 14678 repswswrd 14730 caubnd2 15300 caubnd 15301 mulcn2 15536 cn1lem 15538 rlimo1 15557 o1rlimmul 15559 climsqz 15581 climsqz2 15582 rlimsqzlem 15591 climsup 15612 caucvgrlem2 15617 iseralt 15627 cvgcmp 15758 cvgcmpce 15760 ruclem3 16172 ruclem12 16180 ltoddhalfle 16300 algcvgblem 16510 ncoprmlnprm 16660 pclem 16767 infpn2 16842 gsummoncoe1 21810 mp2pm2mplem4 22293 metss2lem 24002 ngptgp 24127 nghmcn 24244 iocopnst 24438 ovollb2lem 24987 ovolicc2lem4 25019 volcn 25105 ismbf3d 25153 dvcnvrelem1 25516 dvfsumrlim 25530 ulmcn 25893 mtest 25898 logdivlti 26110 isosctrlem1 26303 ftalem2 26558 chtub 26695 bposlem6 26772 gausslemma2dlem2 26850 chtppilim 26958 dchrisumlem3 26974 pntlem3 27092 clwlkclwwlklem2a 29231 vacn 29925 nmcvcn 29926 blocni 30036 chscllem2 30869 lnconi 31264 staddi 31477 stadd3i 31479 ltflcei 36414 poimirlem29 36455 geomcau 36565 heibor1lem 36615 bfplem2 36629 rrncmslem 36638 climinf 44257 zm1nn 45945 iccpartigtl 46026 tgoldbach 46420 ply1mulgsumlem2 46970 difmodm1lt 47110 |
Copyright terms: Public domain | W3C validator |