| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lelttr | Structured version Visualization version GIF version | ||
| Description: Transitive law. (Contributed by NM, 23-May-1999.) |
| Ref | Expression |
|---|---|
| lelttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leloe 11260 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | |
| 2 | 1 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
| 3 | lttr 11250 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 4 | 3 | expd 415 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
| 5 | breq1 5110 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐶 ↔ 𝐵 < 𝐶)) | |
| 6 | 5 | biimprd 248 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶)) |
| 7 | 6 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 = 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
| 8 | 4, 7 | jaod 859 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵) → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
| 9 | 2, 8 | sylbid 240 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
| 10 | 9 | impd 410 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 < clt 11208 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 |
| This theorem is referenced by: leltletr 11265 letr 11268 lelttri 11301 lelttrd 11332 letrp1 12026 ltmul12a 12038 ledivp1 12085 supmul1 12152 bndndx 12441 uzind 12626 fnn0ind 12633 rpnnen1lem5 12940 xrinfmsslem 13268 elfzo0z 13662 nn0p1elfzo 13663 fzofzim 13670 elfzodifsumelfzo 13692 flge 13767 flflp1 13769 flltdivnn0lt 13795 modfzo0difsn 13908 fsequb 13940 expnlbnd2 14199 ccat2s1fvw 14603 swrdswrd 14670 pfxccatin12lem3 14697 repswswrd 14749 caubnd2 15324 caubnd 15325 mulcn2 15562 cn1lem 15564 rlimo1 15583 o1rlimmul 15585 climsqz 15607 climsqz2 15608 rlimsqzlem 15615 climsup 15636 caucvgrlem2 15641 iseralt 15651 cvgcmp 15782 cvgcmpce 15784 ruclem3 16201 ruclem12 16209 ltoddhalfle 16331 algcvgblem 16547 ncoprmlnprm 16698 pclem 16809 infpn2 16884 gsummoncoe1 22195 mp2pm2mplem4 22696 metss2lem 24399 ngptgp 24524 nghmcn 24633 iocopnst 24837 ovollb2lem 25389 ovolicc2lem4 25421 volcn 25507 ismbf3d 25555 dvcnvrelem1 25922 dvfsumrlim 25938 ulmcn 26308 mtest 26313 logdivlti 26529 isosctrlem1 26728 ftalem2 26984 chtub 27123 bposlem6 27200 gausslemma2dlem2 27278 chtppilim 27386 dchrisumlem3 27402 pntlem3 27520 clwlkclwwlklem2a 29927 vacn 30623 nmcvcn 30624 blocni 30734 chscllem2 31567 lnconi 31962 staddi 32175 stadd3i 32177 ltflcei 37602 poimirlem29 37643 geomcau 37753 heibor1lem 37803 bfplem2 37817 rrncmslem 37826 climinf 45604 zm1nn 47300 iccpartigtl 47421 tgoldbach 47815 ply1mulgsumlem2 48373 |
| Copyright terms: Public domain | W3C validator |