MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lelttr Structured version   Visualization version   GIF version

Theorem lelttr 11240
Description: Transitive law. (Contributed by NM, 23-May-1999.)
Assertion
Ref Expression
lelttr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))

Proof of Theorem lelttr
StepHypRef Expression
1 leloe 11236 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
213adant3 1132 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
3 lttr 11226 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
43expd 415 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐵 < 𝐶𝐴 < 𝐶)))
5 breq1 5105 . . . . . 6 (𝐴 = 𝐵 → (𝐴 < 𝐶𝐵 < 𝐶))
65biimprd 248 . . . . 5 (𝐴 = 𝐵 → (𝐵 < 𝐶𝐴 < 𝐶))
76a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 = 𝐵 → (𝐵 < 𝐶𝐴 < 𝐶)))
84, 7jaod 859 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐴 = 𝐵) → (𝐵 < 𝐶𝐴 < 𝐶)))
92, 8sylbid 240 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐵 → (𝐵 < 𝐶𝐴 < 𝐶)))
109impd 410 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  cr 11043   < clt 11184  cle 11185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190
This theorem is referenced by:  leltletr  11241  letr  11244  lelttri  11277  lelttrd  11308  letrp1  12002  ltmul12a  12014  ledivp1  12061  supmul1  12128  bndndx  12417  uzind  12602  fnn0ind  12609  rpnnen1lem5  12916  xrinfmsslem  13244  elfzo0z  13638  nn0p1elfzo  13639  fzofzim  13646  elfzodifsumelfzo  13668  flge  13743  flflp1  13745  flltdivnn0lt  13771  modfzo0difsn  13884  fsequb  13916  expnlbnd2  14175  ccat2s1fvw  14579  swrdswrd  14646  pfxccatin12lem3  14673  repswswrd  14725  caubnd2  15300  caubnd  15301  mulcn2  15538  cn1lem  15540  rlimo1  15559  o1rlimmul  15561  climsqz  15583  climsqz2  15584  rlimsqzlem  15591  climsup  15612  caucvgrlem2  15617  iseralt  15627  cvgcmp  15758  cvgcmpce  15760  ruclem3  16177  ruclem12  16185  ltoddhalfle  16307  algcvgblem  16523  ncoprmlnprm  16674  pclem  16785  infpn2  16860  gsummoncoe1  22171  mp2pm2mplem4  22672  metss2lem  24375  ngptgp  24500  nghmcn  24609  iocopnst  24813  ovollb2lem  25365  ovolicc2lem4  25397  volcn  25483  ismbf3d  25531  dvcnvrelem1  25898  dvfsumrlim  25914  ulmcn  26284  mtest  26289  logdivlti  26505  isosctrlem1  26704  ftalem2  26960  chtub  27099  bposlem6  27176  gausslemma2dlem2  27254  chtppilim  27362  dchrisumlem3  27378  pntlem3  27496  clwlkclwwlklem2a  29900  vacn  30596  nmcvcn  30597  blocni  30707  chscllem2  31540  lnconi  31935  staddi  32148  stadd3i  32150  ltflcei  37575  poimirlem29  37616  geomcau  37726  heibor1lem  37776  bfplem2  37790  rrncmslem  37799  climinf  45577  zm1nn  47276  iccpartigtl  47397  tgoldbach  47791  ply1mulgsumlem2  48349
  Copyright terms: Public domain W3C validator