| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lelttr | Structured version Visualization version GIF version | ||
| Description: Transitive law. (Contributed by NM, 23-May-1999.) |
| Ref | Expression |
|---|---|
| lelttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leloe 11236 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | |
| 2 | 1 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
| 3 | lttr 11226 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 4 | 3 | expd 415 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
| 5 | breq1 5105 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐶 ↔ 𝐵 < 𝐶)) | |
| 6 | 5 | biimprd 248 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶)) |
| 7 | 6 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 = 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
| 8 | 4, 7 | jaod 859 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵) → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
| 9 | 2, 8 | sylbid 240 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
| 10 | 9 | impd 410 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ℝcr 11043 < clt 11184 ≤ cle 11185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 |
| This theorem is referenced by: leltletr 11241 letr 11244 lelttri 11277 lelttrd 11308 letrp1 12002 ltmul12a 12014 ledivp1 12061 supmul1 12128 bndndx 12417 uzind 12602 fnn0ind 12609 rpnnen1lem5 12916 xrinfmsslem 13244 elfzo0z 13638 nn0p1elfzo 13639 fzofzim 13646 elfzodifsumelfzo 13668 flge 13743 flflp1 13745 flltdivnn0lt 13771 modfzo0difsn 13884 fsequb 13916 expnlbnd2 14175 ccat2s1fvw 14579 swrdswrd 14646 pfxccatin12lem3 14673 repswswrd 14725 caubnd2 15300 caubnd 15301 mulcn2 15538 cn1lem 15540 rlimo1 15559 o1rlimmul 15561 climsqz 15583 climsqz2 15584 rlimsqzlem 15591 climsup 15612 caucvgrlem2 15617 iseralt 15627 cvgcmp 15758 cvgcmpce 15760 ruclem3 16177 ruclem12 16185 ltoddhalfle 16307 algcvgblem 16523 ncoprmlnprm 16674 pclem 16785 infpn2 16860 gsummoncoe1 22228 mp2pm2mplem4 22729 metss2lem 24432 ngptgp 24557 nghmcn 24666 iocopnst 24870 ovollb2lem 25422 ovolicc2lem4 25454 volcn 25540 ismbf3d 25588 dvcnvrelem1 25955 dvfsumrlim 25971 ulmcn 26341 mtest 26346 logdivlti 26562 isosctrlem1 26761 ftalem2 27017 chtub 27156 bposlem6 27233 gausslemma2dlem2 27311 chtppilim 27419 dchrisumlem3 27435 pntlem3 27553 clwlkclwwlklem2a 29977 vacn 30673 nmcvcn 30674 blocni 30784 chscllem2 31617 lnconi 32012 staddi 32225 stadd3i 32227 ltflcei 37595 poimirlem29 37636 geomcau 37746 heibor1lem 37796 bfplem2 37810 rrncmslem 37819 climinf 45597 zm1nn 47296 iccpartigtl 47417 tgoldbach 47811 ply1mulgsumlem2 48369 |
| Copyright terms: Public domain | W3C validator |