| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpat4N | Structured version Visualization version GIF version | ||
| Description: Property of an atom under a co-atom. (Contributed by NM, 24-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lhpat.l | ⊢ ≤ = (le‘𝐾) |
| lhpat.j | ⊢ ∨ = (join‘𝐾) |
| lhpat.m | ⊢ ∧ = (meet‘𝐾) |
| lhpat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| lhpat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| lhpat4N | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → ((𝑃 ∨ 𝑈) ∧ 𝑊) = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1133 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | simp2 1134 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
| 3 | simp3l 1198 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → 𝑈 ∈ 𝐴) | |
| 4 | eqid 2729 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 5 | lhpat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | 4, 5 | atbase 39072 | . . 3 ⊢ (𝑈 ∈ 𝐴 → 𝑈 ∈ (Base‘𝐾)) |
| 7 | 3, 6 | syl 17 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → 𝑈 ∈ (Base‘𝐾)) |
| 8 | simp3r 1199 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → 𝑈 ≤ 𝑊) | |
| 9 | lhpat.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 10 | lhpat.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 11 | lhpat.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 12 | lhpat.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 13 | 4, 9, 10, 11, 5, 12 | lhple 39826 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑈 ∈ (Base‘𝐾) ∧ 𝑈 ≤ 𝑊)) → ((𝑃 ∨ 𝑈) ∧ 𝑊) = 𝑈) |
| 14 | 1, 2, 7, 8, 13 | syl112anc 1371 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → ((𝑃 ∨ 𝑈) ∧ 𝑊) = 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2100 class class class wbr 5154 ‘cfv 6556 (class class class)co 7427 Basecbs 17226 lecple 17286 joincjn 18349 meetcmee 18350 Atomscatm 39046 HLchlt 39133 LHypclh 39768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2102 ax-9 2110 ax-10 2133 ax-11 2150 ax-12 2170 ax-ext 2700 ax-rep 5291 ax-sep 5305 ax-nul 5312 ax-pow 5371 ax-pr 5435 ax-un 7748 |
| This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2062 df-mo 2532 df-eu 2561 df-clab 2707 df-cleq 2721 df-clel 2806 df-nfc 2881 df-ne 2934 df-ral 3055 df-rex 3064 df-rmo 3373 df-reu 3374 df-rab 3429 df-v 3474 df-sbc 3788 df-csb 3904 df-dif 3961 df-un 3963 df-in 3965 df-ss 3975 df-nul 4334 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4917 df-iun 5006 df-iin 5007 df-br 5155 df-opab 5217 df-mpt 5238 df-id 5582 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7383 df-ov 7430 df-oprab 7431 df-mpo 7432 df-1st 8008 df-2nd 8009 df-proset 18333 df-poset 18351 df-plt 18368 df-lub 18384 df-glb 18385 df-join 18386 df-meet 18387 df-p0 18463 df-p1 18464 df-lat 18470 df-clat 18537 df-oposet 38959 df-ol 38961 df-oml 38962 df-covers 39049 df-ats 39050 df-atl 39081 df-cvlat 39105 df-hlat 39134 df-psubsp 39287 df-pmap 39288 df-padd 39580 df-lhyp 39772 |
| This theorem is referenced by: cdlemm10N 40902 |
| Copyright terms: Public domain | W3C validator |