Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpat4N Structured version   Visualization version   GIF version

Theorem lhpat4N 39427
Description: Property of an atom under a co-atom. (Contributed by NM, 24-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhpat.l ≀ = (leβ€˜πΎ)
lhpat.j ∨ = (joinβ€˜πΎ)
lhpat.m ∧ = (meetβ€˜πΎ)
lhpat.a 𝐴 = (Atomsβ€˜πΎ)
lhpat.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
lhpat4N (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š)) β†’ ((𝑃 ∨ π‘ˆ) ∧ π‘Š) = π‘ˆ)

Proof of Theorem lhpat4N
StepHypRef Expression
1 simp1 1133 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simp2 1134 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š)) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
3 simp3l 1198 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š)) β†’ π‘ˆ ∈ 𝐴)
4 eqid 2726 . . . 4 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
5 lhpat.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
64, 5atbase 38671 . . 3 (π‘ˆ ∈ 𝐴 β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
73, 6syl 17 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š)) β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
8 simp3r 1199 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š)) β†’ π‘ˆ ≀ π‘Š)
9 lhpat.l . . 3 ≀ = (leβ€˜πΎ)
10 lhpat.j . . 3 ∨ = (joinβ€˜πΎ)
11 lhpat.m . . 3 ∧ = (meetβ€˜πΎ)
12 lhpat.h . . 3 𝐻 = (LHypβ€˜πΎ)
134, 9, 10, 11, 5, 12lhple 39425 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘ˆ ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ≀ π‘Š)) β†’ ((𝑃 ∨ π‘ˆ) ∧ π‘Š) = π‘ˆ)
141, 2, 7, 8, 13syl112anc 1371 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š)) β†’ ((𝑃 ∨ π‘ˆ) ∧ π‘Š) = π‘ˆ)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   class class class wbr 5141  β€˜cfv 6536  (class class class)co 7404  Basecbs 17150  lecple 17210  joincjn 18273  meetcmee 18274  Atomscatm 38645  HLchlt 38732  LHypclh 39367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-proset 18257  df-poset 18275  df-plt 18292  df-lub 18308  df-glb 18309  df-join 18310  df-meet 18311  df-p0 18387  df-p1 18388  df-lat 18394  df-clat 18461  df-oposet 38558  df-ol 38560  df-oml 38561  df-covers 38648  df-ats 38649  df-atl 38680  df-cvlat 38704  df-hlat 38733  df-psubsp 38886  df-pmap 38887  df-padd 39179  df-lhyp 39371
This theorem is referenced by:  cdlemm10N  40501
  Copyright terms: Public domain W3C validator