![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpat4N | Structured version Visualization version GIF version |
Description: Property of an atom under a co-atom. (Contributed by NM, 24-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lhpat.l | β’ β€ = (leβπΎ) |
lhpat.j | β’ β¨ = (joinβπΎ) |
lhpat.m | β’ β§ = (meetβπΎ) |
lhpat.a | β’ π΄ = (AtomsβπΎ) |
lhpat.h | β’ π» = (LHypβπΎ) |
Ref | Expression |
---|---|
lhpat4N | β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β€ π)) β ((π β¨ π) β§ π) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1137 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β€ π)) β (πΎ β HL β§ π β π»)) | |
2 | simp2 1138 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β€ π)) β (π β π΄ β§ Β¬ π β€ π)) | |
3 | simp3l 1202 | . . 3 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β€ π)) β π β π΄) | |
4 | eqid 2737 | . . . 4 β’ (BaseβπΎ) = (BaseβπΎ) | |
5 | lhpat.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
6 | 4, 5 | atbase 37780 | . . 3 β’ (π β π΄ β π β (BaseβπΎ)) |
7 | 3, 6 | syl 17 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β€ π)) β π β (BaseβπΎ)) |
8 | simp3r 1203 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β€ π)) β π β€ π) | |
9 | lhpat.l | . . 3 β’ β€ = (leβπΎ) | |
10 | lhpat.j | . . 3 β’ β¨ = (joinβπΎ) | |
11 | lhpat.m | . . 3 β’ β§ = (meetβπΎ) | |
12 | lhpat.h | . . 3 β’ π» = (LHypβπΎ) | |
13 | 4, 9, 10, 11, 5, 12 | lhple 38534 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β (BaseβπΎ) β§ π β€ π)) β ((π β¨ π) β§ π) = π) |
14 | 1, 2, 7, 8, 13 | syl112anc 1375 | 1 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β€ π)) β ((π β¨ π) β§ π) = π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 class class class wbr 5110 βcfv 6501 (class class class)co 7362 Basecbs 17090 lecple 17147 joincjn 18207 meetcmee 18208 Atomscatm 37754 HLchlt 37841 LHypclh 38476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-iin 4962 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-1st 7926 df-2nd 7927 df-proset 18191 df-poset 18209 df-plt 18226 df-lub 18242 df-glb 18243 df-join 18244 df-meet 18245 df-p0 18321 df-p1 18322 df-lat 18328 df-clat 18395 df-oposet 37667 df-ol 37669 df-oml 37670 df-covers 37757 df-ats 37758 df-atl 37789 df-cvlat 37813 df-hlat 37842 df-psubsp 37995 df-pmap 37996 df-padd 38288 df-lhyp 38480 |
This theorem is referenced by: cdlemm10N 39610 |
Copyright terms: Public domain | W3C validator |