Proof of Theorem lhple
Step | Hyp | Ref
| Expression |
1 | | simp1l 1199 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝐾 ∈ HL) |
2 | 1 | hllatd 37115 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝐾 ∈ Lat) |
3 | | simp2l 1201 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝑃 ∈ 𝐴) |
4 | | lhple.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
5 | | lhple.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
6 | 4, 5 | atbase 37040 |
. . . . 5
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
7 | 3, 6 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝑃 ∈ 𝐵) |
8 | | simp3l 1203 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝑋 ∈ 𝐵) |
9 | | lhple.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
10 | 4, 9 | latjcom 17953 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∨ 𝑋) = (𝑋 ∨ 𝑃)) |
11 | 2, 7, 8, 10 | syl3anc 1373 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝑃 ∨ 𝑋) = (𝑋 ∨ 𝑃)) |
12 | 11 | oveq1d 7228 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((𝑃 ∨ 𝑋) ∧ 𝑊) = ((𝑋 ∨ 𝑃) ∧ 𝑊)) |
13 | | simp1 1138 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
14 | | simp3r 1204 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝑋 ≤ 𝑊) |
15 | | lhple.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
16 | | lhple.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
17 | | lhple.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
18 | 4, 15, 9, 16, 17 | lhpmod6i1 37790 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ 𝑋 ≤ 𝑊) → (𝑋 ∨ (𝑃 ∧ 𝑊)) = ((𝑋 ∨ 𝑃) ∧ 𝑊)) |
19 | 13, 8, 7, 14, 18 | syl121anc 1377 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝑋 ∨ (𝑃 ∧ 𝑊)) = ((𝑋 ∨ 𝑃) ∧ 𝑊)) |
20 | | eqid 2737 |
. . . . . 6
⊢
(0.‘𝐾) =
(0.‘𝐾) |
21 | 15, 16, 20, 5, 17 | lhpmat 37781 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∧ 𝑊) = (0.‘𝐾)) |
22 | 21 | 3adant3 1134 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝑃 ∧ 𝑊) = (0.‘𝐾)) |
23 | 22 | oveq2d 7229 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝑋 ∨ (𝑃 ∧ 𝑊)) = (𝑋 ∨ (0.‘𝐾))) |
24 | | hlol 37112 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
25 | 1, 24 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝐾 ∈ OL) |
26 | 4, 9, 20 | olj01 36976 |
. . . 4
⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ (0.‘𝐾)) = 𝑋) |
27 | 25, 8, 26 | syl2anc 587 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝑋 ∨ (0.‘𝐾)) = 𝑋) |
28 | 23, 27 | eqtrd 2777 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝑋 ∨ (𝑃 ∧ 𝑊)) = 𝑋) |
29 | 12, 19, 28 | 3eqtr2d 2783 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((𝑃 ∨ 𝑋) ∧ 𝑊) = 𝑋) |