Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhple Structured version   Visualization version   GIF version

Theorem lhple 39515
Description: Property of a lattice element under a co-atom. (Contributed by NM, 28-Feb-2014.)
Hypotheses
Ref Expression
lhple.b 𝐡 = (Baseβ€˜πΎ)
lhple.l ≀ = (leβ€˜πΎ)
lhple.j ∨ = (joinβ€˜πΎ)
lhple.m ∧ = (meetβ€˜πΎ)
lhple.a 𝐴 = (Atomsβ€˜πΎ)
lhple.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
lhple (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ ((𝑃 ∨ 𝑋) ∧ π‘Š) = 𝑋)

Proof of Theorem lhple
StepHypRef Expression
1 simp1l 1195 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ 𝐾 ∈ HL)
21hllatd 38836 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ 𝐾 ∈ Lat)
3 simp2l 1197 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ 𝑃 ∈ 𝐴)
4 lhple.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
5 lhple.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
64, 5atbase 38761 . . . . 5 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ 𝐡)
73, 6syl 17 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ 𝑃 ∈ 𝐡)
8 simp3l 1199 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ 𝑋 ∈ 𝐡)
9 lhple.j . . . . 5 ∨ = (joinβ€˜πΎ)
104, 9latjcom 18438 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐡 ∧ 𝑋 ∈ 𝐡) β†’ (𝑃 ∨ 𝑋) = (𝑋 ∨ 𝑃))
112, 7, 8, 10syl3anc 1369 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (𝑃 ∨ 𝑋) = (𝑋 ∨ 𝑃))
1211oveq1d 7435 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ ((𝑃 ∨ 𝑋) ∧ π‘Š) = ((𝑋 ∨ 𝑃) ∧ π‘Š))
13 simp1 1134 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
14 simp3r 1200 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ 𝑋 ≀ π‘Š)
15 lhple.l . . . 4 ≀ = (leβ€˜πΎ)
16 lhple.m . . . 4 ∧ = (meetβ€˜πΎ)
17 lhple.h . . . 4 𝐻 = (LHypβ€˜πΎ)
184, 15, 9, 16, 17lhpmod6i1 39512 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐡) ∧ 𝑋 ≀ π‘Š) β†’ (𝑋 ∨ (𝑃 ∧ π‘Š)) = ((𝑋 ∨ 𝑃) ∧ π‘Š))
1913, 8, 7, 14, 18syl121anc 1373 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (𝑋 ∨ (𝑃 ∧ π‘Š)) = ((𝑋 ∨ 𝑃) ∧ π‘Š))
20 eqid 2728 . . . . . 6 (0.β€˜πΎ) = (0.β€˜πΎ)
2115, 16, 20, 5, 17lhpmat 39503 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑃 ∧ π‘Š) = (0.β€˜πΎ))
22213adant3 1130 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (𝑃 ∧ π‘Š) = (0.β€˜πΎ))
2322oveq2d 7436 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (𝑋 ∨ (𝑃 ∧ π‘Š)) = (𝑋 ∨ (0.β€˜πΎ)))
24 hlol 38833 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
251, 24syl 17 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ 𝐾 ∈ OL)
264, 9, 20olj01 38697 . . . 4 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∨ (0.β€˜πΎ)) = 𝑋)
2725, 8, 26syl2anc 583 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (𝑋 ∨ (0.β€˜πΎ)) = 𝑋)
2823, 27eqtrd 2768 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (𝑋 ∨ (𝑃 ∧ π‘Š)) = 𝑋)
2912, 19, 283eqtr2d 2774 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ ((𝑃 ∨ 𝑋) ∧ π‘Š) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099   class class class wbr 5148  β€˜cfv 6548  (class class class)co 7420  Basecbs 17179  lecple 17239  joincjn 18302  meetcmee 18303  0.cp0 18414  Latclat 18422  OLcol 38646  Atomscatm 38735  HLchlt 38822  LHypclh 39457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-proset 18286  df-poset 18304  df-plt 18321  df-lub 18337  df-glb 18338  df-join 18339  df-meet 18340  df-p0 18416  df-p1 18417  df-lat 18423  df-clat 18490  df-oposet 38648  df-ol 38650  df-oml 38651  df-covers 38738  df-ats 38739  df-atl 38770  df-cvlat 38794  df-hlat 38823  df-psubsp 38976  df-pmap 38977  df-padd 39269  df-lhyp 39461
This theorem is referenced by:  lhpat4N  39517  cdlemn2  40668  dihord5apre  40735
  Copyright terms: Public domain W3C validator