Proof of Theorem lhple
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1l 1198 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝐾 ∈ HL) | 
| 2 | 1 | hllatd 39365 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝐾 ∈ Lat) | 
| 3 |  | simp2l 1200 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝑃 ∈ 𝐴) | 
| 4 |  | lhple.b | . . . . . 6
⊢ 𝐵 = (Base‘𝐾) | 
| 5 |  | lhple.a | . . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) | 
| 6 | 4, 5 | atbase 39290 | . . . . 5
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) | 
| 7 | 3, 6 | syl 17 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝑃 ∈ 𝐵) | 
| 8 |  | simp3l 1202 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝑋 ∈ 𝐵) | 
| 9 |  | lhple.j | . . . . 5
⊢  ∨ =
(join‘𝐾) | 
| 10 | 4, 9 | latjcom 18492 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∨ 𝑋) = (𝑋 ∨ 𝑃)) | 
| 11 | 2, 7, 8, 10 | syl3anc 1373 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝑃 ∨ 𝑋) = (𝑋 ∨ 𝑃)) | 
| 12 | 11 | oveq1d 7446 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((𝑃 ∨ 𝑋) ∧ 𝑊) = ((𝑋 ∨ 𝑃) ∧ 𝑊)) | 
| 13 |  | simp1 1137 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 14 |  | simp3r 1203 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝑋 ≤ 𝑊) | 
| 15 |  | lhple.l | . . . 4
⊢  ≤ =
(le‘𝐾) | 
| 16 |  | lhple.m | . . . 4
⊢  ∧ =
(meet‘𝐾) | 
| 17 |  | lhple.h | . . . 4
⊢ 𝐻 = (LHyp‘𝐾) | 
| 18 | 4, 15, 9, 16, 17 | lhpmod6i1 40041 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ 𝑋 ≤ 𝑊) → (𝑋 ∨ (𝑃 ∧ 𝑊)) = ((𝑋 ∨ 𝑃) ∧ 𝑊)) | 
| 19 | 13, 8, 7, 14, 18 | syl121anc 1377 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝑋 ∨ (𝑃 ∧ 𝑊)) = ((𝑋 ∨ 𝑃) ∧ 𝑊)) | 
| 20 |  | eqid 2737 | . . . . . 6
⊢
(0.‘𝐾) =
(0.‘𝐾) | 
| 21 | 15, 16, 20, 5, 17 | lhpmat 40032 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∧ 𝑊) = (0.‘𝐾)) | 
| 22 | 21 | 3adant3 1133 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝑃 ∧ 𝑊) = (0.‘𝐾)) | 
| 23 | 22 | oveq2d 7447 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝑋 ∨ (𝑃 ∧ 𝑊)) = (𝑋 ∨ (0.‘𝐾))) | 
| 24 |  | hlol 39362 | . . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | 
| 25 | 1, 24 | syl 17 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝐾 ∈ OL) | 
| 26 | 4, 9, 20 | olj01 39226 | . . . 4
⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ (0.‘𝐾)) = 𝑋) | 
| 27 | 25, 8, 26 | syl2anc 584 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝑋 ∨ (0.‘𝐾)) = 𝑋) | 
| 28 | 23, 27 | eqtrd 2777 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝑋 ∨ (𝑃 ∧ 𝑊)) = 𝑋) | 
| 29 | 12, 19, 28 | 3eqtr2d 2783 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((𝑃 ∨ 𝑋) ∧ 𝑊) = 𝑋) |