| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > llnexch2N | Structured version Visualization version GIF version | ||
| Description: Line exchange property (compare cvlatexch2 39446 for atoms). (Contributed by NM, 18-Nov-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| llnexch.l | ⊢ ≤ = (le‘𝐾) |
| llnexch.j | ⊢ ∨ = (join‘𝐾) |
| llnexch.m | ⊢ ∧ = (meet‘𝐾) |
| llnexch.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| llnexch.n | ⊢ 𝑁 = (LLines‘𝐾) |
| Ref | Expression |
|---|---|
| llnexch2N | ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → ((𝑋 ∧ 𝑌) ≤ 𝑍 → (𝑋 ∧ 𝑍) ≤ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | llnexch.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 2 | llnexch.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 3 | llnexch.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 4 | llnexch.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | llnexch.n | . . 3 ⊢ 𝑁 = (LLines‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | llnexchb2 39978 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → ((𝑋 ∧ 𝑌) ≤ 𝑍 ↔ (𝑋 ∧ 𝑌) = (𝑋 ∧ 𝑍))) |
| 7 | hllat 39472 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 8 | 7 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → 𝐾 ∈ Lat) |
| 9 | simp21 1207 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → 𝑋 ∈ 𝑁) | |
| 10 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 11 | 10, 5 | llnbase 39618 | . . . . 5 ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ (Base‘𝐾)) |
| 12 | 9, 11 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → 𝑋 ∈ (Base‘𝐾)) |
| 13 | simp22 1208 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → 𝑌 ∈ 𝑁) | |
| 14 | 10, 5 | llnbase 39618 | . . . . 5 ⊢ (𝑌 ∈ 𝑁 → 𝑌 ∈ (Base‘𝐾)) |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → 𝑌 ∈ (Base‘𝐾)) |
| 16 | 10, 1, 3 | latmle2 18371 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| 17 | 8, 12, 15, 16 | syl3anc 1373 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| 18 | breq1 5092 | . . 3 ⊢ ((𝑋 ∧ 𝑌) = (𝑋 ∧ 𝑍) → ((𝑋 ∧ 𝑌) ≤ 𝑌 ↔ (𝑋 ∧ 𝑍) ≤ 𝑌)) | |
| 19 | 17, 18 | syl5ibcom 245 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → ((𝑋 ∧ 𝑌) = (𝑋 ∧ 𝑍) → (𝑋 ∧ 𝑍) ≤ 𝑌)) |
| 20 | 6, 19 | sylbid 240 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → ((𝑋 ∧ 𝑌) ≤ 𝑍 → (𝑋 ∧ 𝑍) ≤ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 lecple 17168 joincjn 18217 meetcmee 18218 Latclat 18337 Atomscatm 39372 HLchlt 39459 LLinesclln 39600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-lat 18338 df-clat 18405 df-oposet 39285 df-ol 39287 df-oml 39288 df-covers 39375 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 df-llines 39607 df-psubsp 39612 df-pmap 39613 df-padd 39905 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |