![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > llnexch2N | Structured version Visualization version GIF version |
Description: Line exchange property (compare cvlatexch2 38733 for atoms). (Contributed by NM, 18-Nov-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
llnexch.l | ⊢ ≤ = (le‘𝐾) |
llnexch.j | ⊢ ∨ = (join‘𝐾) |
llnexch.m | ⊢ ∧ = (meet‘𝐾) |
llnexch.a | ⊢ 𝐴 = (Atoms‘𝐾) |
llnexch.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
llnexch2N | ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → ((𝑋 ∧ 𝑌) ≤ 𝑍 → (𝑋 ∧ 𝑍) ≤ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | llnexch.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | llnexch.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | llnexch.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
4 | llnexch.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | llnexch.n | . . 3 ⊢ 𝑁 = (LLines‘𝐾) | |
6 | 1, 2, 3, 4, 5 | llnexchb2 39266 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → ((𝑋 ∧ 𝑌) ≤ 𝑍 ↔ (𝑋 ∧ 𝑌) = (𝑋 ∧ 𝑍))) |
7 | hllat 38759 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
8 | 7 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → 𝐾 ∈ Lat) |
9 | simp21 1204 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → 𝑋 ∈ 𝑁) | |
10 | eqid 2727 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
11 | 10, 5 | llnbase 38906 | . . . . 5 ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ (Base‘𝐾)) |
12 | 9, 11 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → 𝑋 ∈ (Base‘𝐾)) |
13 | simp22 1205 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → 𝑌 ∈ 𝑁) | |
14 | 10, 5 | llnbase 38906 | . . . . 5 ⊢ (𝑌 ∈ 𝑁 → 𝑌 ∈ (Base‘𝐾)) |
15 | 13, 14 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → 𝑌 ∈ (Base‘𝐾)) |
16 | 10, 1, 3 | latmle2 18442 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
17 | 8, 12, 15, 16 | syl3anc 1369 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
18 | breq1 5145 | . . 3 ⊢ ((𝑋 ∧ 𝑌) = (𝑋 ∧ 𝑍) → ((𝑋 ∧ 𝑌) ≤ 𝑌 ↔ (𝑋 ∧ 𝑍) ≤ 𝑌)) | |
19 | 17, 18 | syl5ibcom 244 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → ((𝑋 ∧ 𝑌) = (𝑋 ∧ 𝑍) → (𝑋 ∧ 𝑍) ≤ 𝑌)) |
20 | 6, 19 | sylbid 239 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → ((𝑋 ∧ 𝑌) ≤ 𝑍 → (𝑋 ∧ 𝑍) ≤ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 Basecbs 17165 lecple 17225 joincjn 18288 meetcmee 18289 Latclat 18408 Atomscatm 38659 HLchlt 38746 LLinesclln 38888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7985 df-2nd 7986 df-proset 18272 df-poset 18290 df-plt 18307 df-lub 18323 df-glb 18324 df-join 18325 df-meet 18326 df-p0 18402 df-lat 18409 df-clat 18476 df-oposet 38572 df-ol 38574 df-oml 38575 df-covers 38662 df-ats 38663 df-atl 38694 df-cvlat 38718 df-hlat 38747 df-llines 38895 df-psubsp 38900 df-pmap 38901 df-padd 39193 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |