![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > llnexch2N | Structured version Visualization version GIF version |
Description: Line exchange property (compare cvlatexch2 38195 for atoms). (Contributed by NM, 18-Nov-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
llnexch.l | β’ β€ = (leβπΎ) |
llnexch.j | β’ β¨ = (joinβπΎ) |
llnexch.m | β’ β§ = (meetβπΎ) |
llnexch.a | β’ π΄ = (AtomsβπΎ) |
llnexch.n | β’ π = (LLinesβπΎ) |
Ref | Expression |
---|---|
llnexch2N | β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ ((π β§ π) β π΄ β§ π β π)) β ((π β§ π) β€ π β (π β§ π) β€ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | llnexch.l | . . 3 β’ β€ = (leβπΎ) | |
2 | llnexch.j | . . 3 β’ β¨ = (joinβπΎ) | |
3 | llnexch.m | . . 3 β’ β§ = (meetβπΎ) | |
4 | llnexch.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
5 | llnexch.n | . . 3 β’ π = (LLinesβπΎ) | |
6 | 1, 2, 3, 4, 5 | llnexchb2 38728 | . 2 β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ ((π β§ π) β π΄ β§ π β π)) β ((π β§ π) β€ π β (π β§ π) = (π β§ π))) |
7 | hllat 38221 | . . . . 5 β’ (πΎ β HL β πΎ β Lat) | |
8 | 7 | 3ad2ant1 1133 | . . . 4 β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ ((π β§ π) β π΄ β§ π β π)) β πΎ β Lat) |
9 | simp21 1206 | . . . . 5 β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ ((π β§ π) β π΄ β§ π β π)) β π β π) | |
10 | eqid 2732 | . . . . . 6 β’ (BaseβπΎ) = (BaseβπΎ) | |
11 | 10, 5 | llnbase 38368 | . . . . 5 β’ (π β π β π β (BaseβπΎ)) |
12 | 9, 11 | syl 17 | . . . 4 β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ ((π β§ π) β π΄ β§ π β π)) β π β (BaseβπΎ)) |
13 | simp22 1207 | . . . . 5 β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ ((π β§ π) β π΄ β§ π β π)) β π β π) | |
14 | 10, 5 | llnbase 38368 | . . . . 5 β’ (π β π β π β (BaseβπΎ)) |
15 | 13, 14 | syl 17 | . . . 4 β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ ((π β§ π) β π΄ β§ π β π)) β π β (BaseβπΎ)) |
16 | 10, 1, 3 | latmle2 18414 | . . . 4 β’ ((πΎ β Lat β§ π β (BaseβπΎ) β§ π β (BaseβπΎ)) β (π β§ π) β€ π) |
17 | 8, 12, 15, 16 | syl3anc 1371 | . . 3 β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ ((π β§ π) β π΄ β§ π β π)) β (π β§ π) β€ π) |
18 | breq1 5150 | . . 3 β’ ((π β§ π) = (π β§ π) β ((π β§ π) β€ π β (π β§ π) β€ π)) | |
19 | 17, 18 | syl5ibcom 244 | . 2 β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ ((π β§ π) β π΄ β§ π β π)) β ((π β§ π) = (π β§ π) β (π β§ π) β€ π)) |
20 | 6, 19 | sylbid 239 | 1 β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ ((π β§ π) β π΄ β§ π β π)) β ((π β§ π) β€ π β (π β§ π) β€ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 class class class wbr 5147 βcfv 6540 (class class class)co 7405 Basecbs 17140 lecple 17200 joincjn 18260 meetcmee 18261 Latclat 18380 Atomscatm 38121 HLchlt 38208 LLinesclln 38350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-lat 18381 df-clat 18448 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-llines 38357 df-psubsp 38362 df-pmap 38363 df-padd 38655 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |