Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnm2N Structured version   Visualization version   GIF version

Theorem 2llnm2N 39557
Description: The meet of two different lattice lines in a lattice plane is an atom. (Contributed by NM, 5-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2llnm2.l = (le‘𝐾)
2llnm2.m = (meet‘𝐾)
2llnm2.a 𝐴 = (Atoms‘𝐾)
2llnm2.n 𝑁 = (LLines‘𝐾)
2llnm2.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
2llnm2N ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) ∈ 𝐴)

Proof of Theorem 2llnm2N
StepHypRef Expression
1 simp22 1208 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → 𝑌𝑁)
2 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → 𝐾 ∈ HL)
3 hllat 39352 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
433ad2ant1 1133 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → 𝐾 ∈ Lat)
5 simp21 1207 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → 𝑋𝑁)
6 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
7 2llnm2.n . . . . . 6 𝑁 = (LLines‘𝐾)
86, 7llnbase 39498 . . . . 5 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
95, 8syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → 𝑋 ∈ (Base‘𝐾))
106, 7llnbase 39498 . . . . 5 (𝑌𝑁𝑌 ∈ (Base‘𝐾))
111, 10syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → 𝑌 ∈ (Base‘𝐾))
12 2llnm2.m . . . . 5 = (meet‘𝐾)
136, 12latmcl 18346 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
144, 9, 11, 13syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) ∈ (Base‘𝐾))
15 2llnm2.l . . . . . . 7 = (le‘𝐾)
16 eqid 2729 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
17 2llnm2.p . . . . . . 7 𝑃 = (LPlanes‘𝐾)
1815, 16, 7, 172llnjN 39556 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋(join‘𝐾)𝑌) = 𝑊)
19 simp23 1209 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → 𝑊𝑃)
2018, 19eqeltrd 2828 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋(join‘𝐾)𝑌) ∈ 𝑃)
216, 15, 16latlej1 18354 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → 𝑋 (𝑋(join‘𝐾)𝑌))
224, 9, 11, 21syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → 𝑋 (𝑋(join‘𝐾)𝑌))
23 eqid 2729 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
2415, 23, 7, 17llncvrlpln2 39546 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁 ∧ (𝑋(join‘𝐾)𝑌) ∈ 𝑃) ∧ 𝑋 (𝑋(join‘𝐾)𝑌)) → 𝑋( ⋖ ‘𝐾)(𝑋(join‘𝐾)𝑌))
252, 5, 20, 22, 24syl31anc 1375 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → 𝑋( ⋖ ‘𝐾)(𝑋(join‘𝐾)𝑌))
266, 16, 12, 23cvrexch 39409 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → ((𝑋 𝑌)( ⋖ ‘𝐾)𝑌𝑋( ⋖ ‘𝐾)(𝑋(join‘𝐾)𝑌)))
272, 9, 11, 26syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → ((𝑋 𝑌)( ⋖ ‘𝐾)𝑌𝑋( ⋖ ‘𝐾)(𝑋(join‘𝐾)𝑌)))
2825, 27mpbird 257 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌)( ⋖ ‘𝐾)𝑌)
29 2llnm2.a . . . 4 𝐴 = (Atoms‘𝐾)
306, 23, 29, 7atcvrlln 39509 . . 3 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → ((𝑋 𝑌) ∈ 𝐴𝑌𝑁))
312, 14, 11, 28, 30syl31anc 1375 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → ((𝑋 𝑌) ∈ 𝐴𝑌𝑁))
321, 31mpbird 257 1 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Latclat 18337  ccvr 39251  Atomscatm 39252  HLchlt 39339  LLinesclln 39480  LPlanesclpl 39481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39165  df-ol 39167  df-oml 39168  df-covers 39255  df-ats 39256  df-atl 39287  df-cvlat 39311  df-hlat 39340  df-llines 39487  df-lplanes 39488
This theorem is referenced by:  2llnm3N  39558
  Copyright terms: Public domain W3C validator