Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnm2N Structured version   Visualization version   GIF version

Theorem 2llnm2N 36256
Description: The meet of two different lattice lines in a lattice plane is an atom. (Contributed by NM, 5-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2llnm2.l = (le‘𝐾)
2llnm2.m = (meet‘𝐾)
2llnm2.a 𝐴 = (Atoms‘𝐾)
2llnm2.n 𝑁 = (LLines‘𝐾)
2llnm2.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
2llnm2N ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) ∈ 𝐴)

Proof of Theorem 2llnm2N
StepHypRef Expression
1 simp22 1200 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → 𝑌𝑁)
2 simp1 1129 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → 𝐾 ∈ HL)
3 hllat 36051 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
433ad2ant1 1126 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → 𝐾 ∈ Lat)
5 simp21 1199 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → 𝑋𝑁)
6 eqid 2797 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
7 2llnm2.n . . . . . 6 𝑁 = (LLines‘𝐾)
86, 7llnbase 36197 . . . . 5 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
95, 8syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → 𝑋 ∈ (Base‘𝐾))
106, 7llnbase 36197 . . . . 5 (𝑌𝑁𝑌 ∈ (Base‘𝐾))
111, 10syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → 𝑌 ∈ (Base‘𝐾))
12 2llnm2.m . . . . 5 = (meet‘𝐾)
136, 12latmcl 17495 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
144, 9, 11, 13syl3anc 1364 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) ∈ (Base‘𝐾))
15 2llnm2.l . . . . . . 7 = (le‘𝐾)
16 eqid 2797 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
17 2llnm2.p . . . . . . 7 𝑃 = (LPlanes‘𝐾)
1815, 16, 7, 172llnjN 36255 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋(join‘𝐾)𝑌) = 𝑊)
19 simp23 1201 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → 𝑊𝑃)
2018, 19eqeltrd 2885 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋(join‘𝐾)𝑌) ∈ 𝑃)
216, 15, 16latlej1 17503 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → 𝑋 (𝑋(join‘𝐾)𝑌))
224, 9, 11, 21syl3anc 1364 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → 𝑋 (𝑋(join‘𝐾)𝑌))
23 eqid 2797 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
2415, 23, 7, 17llncvrlpln2 36245 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁 ∧ (𝑋(join‘𝐾)𝑌) ∈ 𝑃) ∧ 𝑋 (𝑋(join‘𝐾)𝑌)) → 𝑋( ⋖ ‘𝐾)(𝑋(join‘𝐾)𝑌))
252, 5, 20, 22, 24syl31anc 1366 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → 𝑋( ⋖ ‘𝐾)(𝑋(join‘𝐾)𝑌))
266, 16, 12, 23cvrexch 36108 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → ((𝑋 𝑌)( ⋖ ‘𝐾)𝑌𝑋( ⋖ ‘𝐾)(𝑋(join‘𝐾)𝑌)))
272, 9, 11, 26syl3anc 1364 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → ((𝑋 𝑌)( ⋖ ‘𝐾)𝑌𝑋( ⋖ ‘𝐾)(𝑋(join‘𝐾)𝑌)))
2825, 27mpbird 258 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌)( ⋖ ‘𝐾)𝑌)
29 2llnm2.a . . . 4 𝐴 = (Atoms‘𝐾)
306, 23, 29, 7atcvrlln 36208 . . 3 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → ((𝑋 𝑌) ∈ 𝐴𝑌𝑁))
312, 14, 11, 28, 30syl31anc 1366 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → ((𝑋 𝑌) ∈ 𝐴𝑌𝑁))
321, 31mpbird 258 1 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  w3a 1080   = wceq 1525  wcel 2083  wne 2986   class class class wbr 4968  cfv 6232  (class class class)co 7023  Basecbs 16316  lecple 16405  joincjn 17387  meetcmee 17388  Latclat 17488  ccvr 35950  Atomscatm 35951  HLchlt 36038  LLinesclln 36179  LPlanesclpl 36180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-proset 17371  df-poset 17389  df-plt 17401  df-lub 17417  df-glb 17418  df-join 17419  df-meet 17420  df-p0 17482  df-lat 17489  df-clat 17551  df-oposet 35864  df-ol 35866  df-oml 35867  df-covers 35954  df-ats 35955  df-atl 35986  df-cvlat 36010  df-hlat 36039  df-llines 36186  df-lplanes 36187
This theorem is referenced by:  2llnm3N  36257
  Copyright terms: Public domain W3C validator