MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspcl Structured version   Visualization version   GIF version

Theorem lspcl 19967
Description: The span of a set of vectors is a subspace. (spancl 29371 analog.) (Contributed by NM, 9-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v 𝑉 = (Base‘𝑊)
lspval.s 𝑆 = (LSubSp‘𝑊)
lspval.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspcl ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) ∈ 𝑆)

Proof of Theorem lspcl
StepHypRef Expression
1 lspval.v . . 3 𝑉 = (Base‘𝑊)
2 lspval.s . . 3 𝑆 = (LSubSp‘𝑊)
3 lspval.n . . 3 𝑁 = (LSpan‘𝑊)
41, 2, 3lspf 19965 . 2 (𝑊 ∈ LMod → 𝑁:𝒫 𝑉𝑆)
51fvexi 6709 . . . 4 𝑉 ∈ V
65elpw2 5223 . . 3 (𝑈 ∈ 𝒫 𝑉𝑈𝑉)
76biimpri 231 . 2 (𝑈𝑉𝑈 ∈ 𝒫 𝑉)
8 ffvelrn 6880 . 2 ((𝑁:𝒫 𝑉𝑆𝑈 ∈ 𝒫 𝑉) → (𝑁𝑈) ∈ 𝑆)
94, 7, 8syl2an 599 1 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wss 3853  𝒫 cpw 4499  wf 6354  cfv 6358  Basecbs 16666  LModclmod 19853  LSubSpclss 19922  LSpanclspn 19962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-plusg 16762  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-grp 18322  df-minusg 18323  df-sbg 18324  df-mgp 19459  df-ur 19471  df-ring 19518  df-lmod 19855  df-lss 19923  df-lsp 19963
This theorem is referenced by:  lspsncl  19968  lspprcl  19969  lsptpcl  19970  lspssv  19974  lspidm  19977  lspsnvsi  19995  lsp0  20000  lspun0  20002  lsslsp  20006  lmhmlsp  20040  lsmsp  20077  lsmsp2  20078  lspvadd  20087  lspsolvlem  20133  lspsolv  20134  lsppratlem2  20139  lsppratlem3  20140  islbs2  20145  islbs3  20146  lbsextlem2  20150  rspcl  20214  obselocv  20644  frlmsslsp  20712  islinds3  20750  0ellsp  31233  lsmidl  31257  lbslsat  31367  lsatdim  31368  drngdimgt0  31369  lindsunlem  31373  lbsdiflsp0  31375  dimkerim  31376  lindsadd  35456  lindsenlbs  35458  islshpsm  36680  lssats  36712  dvh4dimlem  39143  islssfgi  40541  lmhmfgsplit  40555
  Copyright terms: Public domain W3C validator