MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspcl Structured version   Visualization version   GIF version

Theorem lspcl 20580
Description: The span of a set of vectors is a subspace. (spancl 30577 analog.) (Contributed by NM, 9-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v 𝑉 = (Base‘𝑊)
lspval.s 𝑆 = (LSubSp‘𝑊)
lspval.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspcl ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) ∈ 𝑆)

Proof of Theorem lspcl
StepHypRef Expression
1 lspval.v . . 3 𝑉 = (Base‘𝑊)
2 lspval.s . . 3 𝑆 = (LSubSp‘𝑊)
3 lspval.n . . 3 𝑁 = (LSpan‘𝑊)
41, 2, 3lspf 20578 . 2 (𝑊 ∈ LMod → 𝑁:𝒫 𝑉𝑆)
51fvexi 6903 . . . 4 𝑉 ∈ V
65elpw2 5345 . . 3 (𝑈 ∈ 𝒫 𝑉𝑈𝑉)
76biimpri 227 . 2 (𝑈𝑉𝑈 ∈ 𝒫 𝑉)
8 ffvelcdm 7081 . 2 ((𝑁:𝒫 𝑉𝑆𝑈 ∈ 𝒫 𝑉) → (𝑁𝑈) ∈ 𝑆)
94, 7, 8syl2an 597 1 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wss 3948  𝒫 cpw 4602  wf 6537  cfv 6541  Basecbs 17141  LModclmod 20464  LSubSpclss 20535  LSpanclspn 20575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17142  df-plusg 17207  df-0g 17384  df-mgm 18558  df-sgrp 18607  df-mnd 18623  df-grp 18819  df-minusg 18820  df-sbg 18821  df-mgp 19983  df-ur 20000  df-ring 20052  df-lmod 20466  df-lss 20536  df-lsp 20576
This theorem is referenced by:  lspsncl  20581  lspprcl  20582  lsptpcl  20583  lspssv  20587  lspidm  20590  lspsnvsi  20608  lsp0  20613  lspun0  20615  lsslsp  20619  lmhmlsp  20653  lsmsp  20690  lsmsp2  20691  lspvadd  20700  lspsolvlem  20748  lspsolv  20749  lsppratlem2  20754  lsppratlem3  20755  islbs2  20760  islbs3  20761  lbsextlem2  20765  rspcl  20840  obselocv  21275  frlmsslsp  21343  islinds3  21381  0ellsp  32471  lsmidl  32500  lbslsat  32690  lsatdim  32691  drngdimgt0  32692  lindsunlem  32698  lbsdiflsp0  32700  dimkerim  32701  lindsadd  36470  lindsenlbs  36472  islshpsm  37839  lssats  37871  dvh4dimlem  40303  islssfgi  41800  lmhmfgsplit  41814
  Copyright terms: Public domain W3C validator