![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspcl | Structured version Visualization version GIF version |
Description: The span of a set of vectors is a subspace. (spancl 30577 analog.) (Contributed by NM, 9-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspcl | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspval.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lspval.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | lspval.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | 1, 2, 3 | lspf 20578 | . 2 ⊢ (𝑊 ∈ LMod → 𝑁:𝒫 𝑉⟶𝑆) |
5 | 1 | fvexi 6903 | . . . 4 ⊢ 𝑉 ∈ V |
6 | 5 | elpw2 5345 | . . 3 ⊢ (𝑈 ∈ 𝒫 𝑉 ↔ 𝑈 ⊆ 𝑉) |
7 | 6 | biimpri 227 | . 2 ⊢ (𝑈 ⊆ 𝑉 → 𝑈 ∈ 𝒫 𝑉) |
8 | ffvelcdm 7081 | . 2 ⊢ ((𝑁:𝒫 𝑉⟶𝑆 ∧ 𝑈 ∈ 𝒫 𝑉) → (𝑁‘𝑈) ∈ 𝑆) | |
9 | 4, 7, 8 | syl2an 597 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ⊆ wss 3948 𝒫 cpw 4602 ⟶wf 6537 ‘cfv 6541 Basecbs 17141 LModclmod 20464 LSubSpclss 20535 LSpanclspn 20575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-1st 7972 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17142 df-plusg 17207 df-0g 17384 df-mgm 18558 df-sgrp 18607 df-mnd 18623 df-grp 18819 df-minusg 18820 df-sbg 18821 df-mgp 19983 df-ur 20000 df-ring 20052 df-lmod 20466 df-lss 20536 df-lsp 20576 |
This theorem is referenced by: lspsncl 20581 lspprcl 20582 lsptpcl 20583 lspssv 20587 lspidm 20590 lspsnvsi 20608 lsp0 20613 lspun0 20615 lsslsp 20619 lmhmlsp 20653 lsmsp 20690 lsmsp2 20691 lspvadd 20700 lspsolvlem 20748 lspsolv 20749 lsppratlem2 20754 lsppratlem3 20755 islbs2 20760 islbs3 20761 lbsextlem2 20765 rspcl 20840 obselocv 21275 frlmsslsp 21343 islinds3 21381 0ellsp 32471 lsmidl 32500 lbslsat 32690 lsatdim 32691 drngdimgt0 32692 lindsunlem 32698 lbsdiflsp0 32700 dimkerim 32701 lindsadd 36470 lindsenlbs 36472 islshpsm 37839 lssats 37871 dvh4dimlem 40303 islssfgi 41800 lmhmfgsplit 41814 |
Copyright terms: Public domain | W3C validator |