Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem6 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 39599. Closure of vector sum with colinear vectors. TODO: Move down 𝑁 definition so top hypotheses can be shared. (Contributed by NM, 10-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem6.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem6.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem6.p | ⊢ + = (+g‘𝑈) |
lcfrlem6.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem6.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfrlem6.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem6.q | ⊢ 𝑄 = (LSubSp‘𝐷) |
lcfrlem6.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem6.g | ⊢ (𝜑 → 𝐺 ∈ 𝑄) |
lcfrlem6.e | ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) |
lcfrlem6.x | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
lcfrlem6.y | ⊢ (𝜑 → 𝑌 ∈ 𝐸) |
lcfrlem6.en | ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
Ref | Expression |
---|---|
lcfrlem6 | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem6.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
2 | lcfrlem6.e | . . . . . 6 ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) | |
3 | 1, 2 | eleqtrdi 2849 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔))) |
4 | eliun 4928 | . . . . 5 ⊢ (𝑋 ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) ↔ ∃𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) | |
5 | 3, 4 | sylib 217 | . . . 4 ⊢ (𝜑 → ∃𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) |
6 | lcfrlem6.h | . . . . . . . . . 10 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | lcfrlem6.u | . . . . . . . . . 10 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
8 | lcfrlem6.k | . . . . . . . . . 10 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
9 | 6, 7, 8 | dvhlmod 39124 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ LMod) |
10 | 9 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑈 ∈ LMod) |
11 | 10 | adantr 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑈 ∈ LMod) |
12 | 8 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
13 | eqid 2738 | . . . . . . . . . 10 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
14 | eqid 2738 | . . . . . . . . . 10 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
15 | lcfrlem6.l | . . . . . . . . . 10 ⊢ 𝐿 = (LKer‘𝑈) | |
16 | lcfrlem6.g | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐺 ∈ 𝑄) | |
17 | eqid 2738 | . . . . . . . . . . . . 13 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
18 | lcfrlem6.q | . . . . . . . . . . . . 13 ⊢ 𝑄 = (LSubSp‘𝐷) | |
19 | 17, 18 | lssel 20199 | . . . . . . . . . . . 12 ⊢ ((𝐺 ∈ 𝑄 ∧ 𝑔 ∈ 𝐺) → 𝑔 ∈ (Base‘𝐷)) |
20 | 16, 19 | sylan 580 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑔 ∈ (Base‘𝐷)) |
21 | lcfrlem6.d | . . . . . . . . . . . . 13 ⊢ 𝐷 = (LDual‘𝑈) | |
22 | 14, 21, 17, 9 | ldualvbase 37140 | . . . . . . . . . . . 12 ⊢ (𝜑 → (Base‘𝐷) = (LFnl‘𝑈)) |
23 | 22 | adantr 481 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (Base‘𝐷) = (LFnl‘𝑈)) |
24 | 20, 23 | eleqtrd 2841 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑔 ∈ (LFnl‘𝑈)) |
25 | 13, 14, 15, 10, 24 | lkrssv 37110 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝐿‘𝑔) ⊆ (Base‘𝑈)) |
26 | eqid 2738 | . . . . . . . . . 10 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
27 | lcfrlem6.o | . . . . . . . . . 10 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
28 | 6, 7, 13, 26, 27 | dochlss 39368 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝑔) ⊆ (Base‘𝑈)) → ( ⊥ ‘(𝐿‘𝑔)) ∈ (LSubSp‘𝑈)) |
29 | 12, 25, 28 | syl2anc 584 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → ( ⊥ ‘(𝐿‘𝑔)) ∈ (LSubSp‘𝑈)) |
30 | 29 | adantr 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → ( ⊥ ‘(𝐿‘𝑔)) ∈ (LSubSp‘𝑈)) |
31 | simpr 485 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) | |
32 | lcfrlem6.en | . . . . . . . . . . . . 13 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) | |
33 | 32 | adantr 481 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
34 | 33 | adantr 481 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
35 | simpr 485 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) → (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) | |
36 | 34, 35 | eqsstrrd 3960 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) → (𝑁‘{𝑌}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) |
37 | 36 | ex 413 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → ((𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔)) → (𝑁‘{𝑌}) ⊆ ( ⊥ ‘(𝐿‘𝑔)))) |
38 | lcfrlem6.n | . . . . . . . . . 10 ⊢ 𝑁 = (LSpan‘𝑈) | |
39 | 6, 27, 7, 13, 15, 21, 18, 2, 8, 16, 1 | lcfrlem4 39559 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) |
40 | 39 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑋 ∈ (Base‘𝑈)) |
41 | 13, 26, 38, 10, 29, 40 | lspsnel5 20257 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) ↔ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔)))) |
42 | lcfrlem6.y | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑌 ∈ 𝐸) | |
43 | 6, 27, 7, 13, 15, 21, 18, 2, 8, 16, 42 | lcfrlem4 39559 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑈)) |
44 | 43 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑌 ∈ (Base‘𝑈)) |
45 | 13, 26, 38, 10, 29, 44 | lspsnel5 20257 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑌 ∈ ( ⊥ ‘(𝐿‘𝑔)) ↔ (𝑁‘{𝑌}) ⊆ ( ⊥ ‘(𝐿‘𝑔)))) |
46 | 37, 41, 45 | 3imtr4d 294 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) → 𝑌 ∈ ( ⊥ ‘(𝐿‘𝑔)))) |
47 | 46 | imp 407 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑌 ∈ ( ⊥ ‘(𝐿‘𝑔))) |
48 | lcfrlem6.p | . . . . . . . 8 ⊢ + = (+g‘𝑈) | |
49 | 48, 26 | lssvacl 20216 | . . . . . . 7 ⊢ (((𝑈 ∈ LMod ∧ ( ⊥ ‘(𝐿‘𝑔)) ∈ (LSubSp‘𝑈)) ∧ (𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) ∧ 𝑌 ∈ ( ⊥ ‘(𝐿‘𝑔)))) → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) |
50 | 11, 30, 31, 47, 49 | syl22anc 836 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) |
51 | 50 | ex 413 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔)))) |
52 | 51 | reximdva 3203 | . . . 4 ⊢ (𝜑 → (∃𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) → ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔)))) |
53 | 5, 52 | mpd 15 | . . 3 ⊢ (𝜑 → ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) |
54 | eliun 4928 | . . 3 ⊢ ((𝑋 + 𝑌) ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) ↔ ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) | |
55 | 53, 54 | sylibr 233 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔))) |
56 | 55, 2 | eleqtrrdi 2850 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ⊆ wss 3887 {csn 4561 ∪ ciun 4924 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 LModclmod 20123 LSubSpclss 20193 LSpanclspn 20233 LFnlclfn 37071 LKerclk 37099 LDualcld 37137 HLchlt 37364 LHypclh 37998 DVecHcdvh 39092 ocHcoch 39361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-riotaBAD 36967 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-undef 8089 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-0g 17152 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-cntz 18923 df-lsm 19241 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-drng 19993 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lvec 20365 df-lfl 37072 df-lkr 37100 df-ldual 37138 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 df-lplanes 37513 df-lvols 37514 df-lines 37515 df-psubsp 37517 df-pmap 37518 df-padd 37810 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 df-trl 38173 df-tendo 38769 df-edring 38771 df-disoa 39043 df-dvech 39093 df-dib 39153 df-dic 39187 df-dih 39243 df-doch 39362 |
This theorem is referenced by: lcfrlem41 39597 |
Copyright terms: Public domain | W3C validator |