Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem6 Structured version   Visualization version   GIF version

Theorem lcfrlem6 41529
Description: Lemma for lcfr 41567. Closure of vector sum with colinear vectors. TODO: Move down 𝑁 definition so top hypotheses can be shared. (Contributed by NM, 10-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem6.h 𝐻 = (LHyp‘𝐾)
lcfrlem6.o = ((ocH‘𝐾)‘𝑊)
lcfrlem6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem6.p + = (+g𝑈)
lcfrlem6.n 𝑁 = (LSpan‘𝑈)
lcfrlem6.l 𝐿 = (LKer‘𝑈)
lcfrlem6.d 𝐷 = (LDual‘𝑈)
lcfrlem6.q 𝑄 = (LSubSp‘𝐷)
lcfrlem6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem6.g (𝜑𝐺𝑄)
lcfrlem6.e 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem6.x (𝜑𝑋𝐸)
lcfrlem6.y (𝜑𝑌𝐸)
lcfrlem6.en (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
Assertion
Ref Expression
lcfrlem6 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Distinct variable groups:   + ,𝑔   𝑈,𝑔   𝑔,𝑋   𝑔,𝑌   𝜑,𝑔
Allowed substitution hints:   𝐷(𝑔)   𝑄(𝑔)   𝐸(𝑔)   𝐺(𝑔)   𝐻(𝑔)   𝐾(𝑔)   𝐿(𝑔)   𝑁(𝑔)   (𝑔)   𝑊(𝑔)

Proof of Theorem lcfrlem6
StepHypRef Expression
1 lcfrlem6.x . . . . . 6 (𝜑𝑋𝐸)
2 lcfrlem6.e . . . . . 6 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
31, 2eleqtrdi 2848 . . . . 5 (𝜑𝑋 𝑔𝐺 ( ‘(𝐿𝑔)))
4 eliun 4999 . . . . 5 (𝑋 𝑔𝐺 ( ‘(𝐿𝑔)) ↔ ∃𝑔𝐺 𝑋 ∈ ( ‘(𝐿𝑔)))
53, 4sylib 218 . . . 4 (𝜑 → ∃𝑔𝐺 𝑋 ∈ ( ‘(𝐿𝑔)))
6 lcfrlem6.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
7 lcfrlem6.u . . . . . . . . . 10 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 lcfrlem6.k . . . . . . . . . 10 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
96, 7, 8dvhlmod 41092 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
109adantr 480 . . . . . . . 8 ((𝜑𝑔𝐺) → 𝑈 ∈ LMod)
1110adantr 480 . . . . . . 7 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑈 ∈ LMod)
128adantr 480 . . . . . . . . 9 ((𝜑𝑔𝐺) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 eqid 2734 . . . . . . . . . 10 (Base‘𝑈) = (Base‘𝑈)
14 eqid 2734 . . . . . . . . . 10 (LFnl‘𝑈) = (LFnl‘𝑈)
15 lcfrlem6.l . . . . . . . . . 10 𝐿 = (LKer‘𝑈)
16 lcfrlem6.g . . . . . . . . . . . 12 (𝜑𝐺𝑄)
17 eqid 2734 . . . . . . . . . . . . 13 (Base‘𝐷) = (Base‘𝐷)
18 lcfrlem6.q . . . . . . . . . . . . 13 𝑄 = (LSubSp‘𝐷)
1917, 18lssel 20952 . . . . . . . . . . . 12 ((𝐺𝑄𝑔𝐺) → 𝑔 ∈ (Base‘𝐷))
2016, 19sylan 580 . . . . . . . . . . 11 ((𝜑𝑔𝐺) → 𝑔 ∈ (Base‘𝐷))
21 lcfrlem6.d . . . . . . . . . . . . 13 𝐷 = (LDual‘𝑈)
2214, 21, 17, 9ldualvbase 39107 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐷) = (LFnl‘𝑈))
2322adantr 480 . . . . . . . . . . 11 ((𝜑𝑔𝐺) → (Base‘𝐷) = (LFnl‘𝑈))
2420, 23eleqtrd 2840 . . . . . . . . . 10 ((𝜑𝑔𝐺) → 𝑔 ∈ (LFnl‘𝑈))
2513, 14, 15, 10, 24lkrssv 39077 . . . . . . . . 9 ((𝜑𝑔𝐺) → (𝐿𝑔) ⊆ (Base‘𝑈))
26 eqid 2734 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
27 lcfrlem6.o . . . . . . . . . 10 = ((ocH‘𝐾)‘𝑊)
286, 7, 13, 26, 27dochlss 41336 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿𝑔) ⊆ (Base‘𝑈)) → ( ‘(𝐿𝑔)) ∈ (LSubSp‘𝑈))
2912, 25, 28syl2anc 584 . . . . . . . 8 ((𝜑𝑔𝐺) → ( ‘(𝐿𝑔)) ∈ (LSubSp‘𝑈))
3029adantr 480 . . . . . . 7 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → ( ‘(𝐿𝑔)) ∈ (LSubSp‘𝑈))
31 simpr 484 . . . . . . 7 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑋 ∈ ( ‘(𝐿𝑔)))
32 lcfrlem6.en . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
3332adantr 480 . . . . . . . . . . . 12 ((𝜑𝑔𝐺) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
3433adantr 480 . . . . . . . . . . 11 (((𝜑𝑔𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔))) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
35 simpr 484 . . . . . . . . . . 11 (((𝜑𝑔𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔))) → (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔)))
3634, 35eqsstrrd 4034 . . . . . . . . . 10 (((𝜑𝑔𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔))) → (𝑁‘{𝑌}) ⊆ ( ‘(𝐿𝑔)))
3736ex 412 . . . . . . . . 9 ((𝜑𝑔𝐺) → ((𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔)) → (𝑁‘{𝑌}) ⊆ ( ‘(𝐿𝑔))))
38 lcfrlem6.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑈)
396, 27, 7, 13, 15, 21, 18, 2, 8, 16, 1lcfrlem4 41527 . . . . . . . . . . 11 (𝜑𝑋 ∈ (Base‘𝑈))
4039adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐺) → 𝑋 ∈ (Base‘𝑈))
4113, 26, 38, 10, 29, 40ellspsn5b 21010 . . . . . . . . 9 ((𝜑𝑔𝐺) → (𝑋 ∈ ( ‘(𝐿𝑔)) ↔ (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔))))
42 lcfrlem6.y . . . . . . . . . . . 12 (𝜑𝑌𝐸)
436, 27, 7, 13, 15, 21, 18, 2, 8, 16, 42lcfrlem4 41527 . . . . . . . . . . 11 (𝜑𝑌 ∈ (Base‘𝑈))
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐺) → 𝑌 ∈ (Base‘𝑈))
4513, 26, 38, 10, 29, 44ellspsn5b 21010 . . . . . . . . 9 ((𝜑𝑔𝐺) → (𝑌 ∈ ( ‘(𝐿𝑔)) ↔ (𝑁‘{𝑌}) ⊆ ( ‘(𝐿𝑔))))
4637, 41, 453imtr4d 294 . . . . . . . 8 ((𝜑𝑔𝐺) → (𝑋 ∈ ( ‘(𝐿𝑔)) → 𝑌 ∈ ( ‘(𝐿𝑔))))
4746imp 406 . . . . . . 7 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑌 ∈ ( ‘(𝐿𝑔)))
48 lcfrlem6.p . . . . . . . 8 + = (+g𝑈)
4948, 26lssvacl 20958 . . . . . . 7 (((𝑈 ∈ LMod ∧ ( ‘(𝐿𝑔)) ∈ (LSubSp‘𝑈)) ∧ (𝑋 ∈ ( ‘(𝐿𝑔)) ∧ 𝑌 ∈ ( ‘(𝐿𝑔)))) → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5011, 30, 31, 47, 49syl22anc 839 . . . . . 6 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5150ex 412 . . . . 5 ((𝜑𝑔𝐺) → (𝑋 ∈ ( ‘(𝐿𝑔)) → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔))))
5251reximdva 3165 . . . 4 (𝜑 → (∃𝑔𝐺 𝑋 ∈ ( ‘(𝐿𝑔)) → ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔))))
535, 52mpd 15 . . 3 (𝜑 → ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
54 eliun 4999 . . 3 ((𝑋 + 𝑌) ∈ 𝑔𝐺 ( ‘(𝐿𝑔)) ↔ ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5553, 54sylibr 234 . 2 (𝜑 → (𝑋 + 𝑌) ∈ 𝑔𝐺 ( ‘(𝐿𝑔)))
5655, 2eleqtrrdi 2849 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wrex 3067  wss 3962  {csn 4630   ciun 4995  cfv 6562  (class class class)co 7430  Basecbs 17244  +gcplusg 17297  LModclmod 20874  LSubSpclss 20946  LSpanclspn 20986  LFnlclfn 39038  LKerclk 39066  LDualcld 39104  HLchlt 39331  LHypclh 39966  DVecHcdvh 41060  ocHcoch 41329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-riotaBAD 38934
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-tpos 8249  df-undef 8296  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-0g 17487  df-proset 18351  df-poset 18370  df-plt 18387  df-lub 18403  df-glb 18404  df-join 18405  df-meet 18406  df-p0 18482  df-p1 18483  df-lat 18489  df-clat 18556  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-subg 19153  df-cntz 19347  df-lsm 19668  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-dvr 20417  df-drng 20747  df-lmod 20876  df-lss 20947  df-lsp 20987  df-lvec 21119  df-lfl 39039  df-lkr 39067  df-ldual 39105  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-llines 39480  df-lplanes 39481  df-lvols 39482  df-lines 39483  df-psubsp 39485  df-pmap 39486  df-padd 39778  df-lhyp 39970  df-laut 39971  df-ldil 40086  df-ltrn 40087  df-trl 40141  df-tendo 40737  df-edring 40739  df-disoa 41011  df-dvech 41061  df-dib 41121  df-dic 41155  df-dih 41211  df-doch 41330
This theorem is referenced by:  lcfrlem41  41565
  Copyright terms: Public domain W3C validator