Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem6 Structured version   Visualization version   GIF version

Theorem lcfrlem6 41541
Description: Lemma for lcfr 41579. Closure of vector sum with colinear vectors. TODO: Move down 𝑁 definition so top hypotheses can be shared. (Contributed by NM, 10-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem6.h 𝐻 = (LHyp‘𝐾)
lcfrlem6.o = ((ocH‘𝐾)‘𝑊)
lcfrlem6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem6.p + = (+g𝑈)
lcfrlem6.n 𝑁 = (LSpan‘𝑈)
lcfrlem6.l 𝐿 = (LKer‘𝑈)
lcfrlem6.d 𝐷 = (LDual‘𝑈)
lcfrlem6.q 𝑄 = (LSubSp‘𝐷)
lcfrlem6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem6.g (𝜑𝐺𝑄)
lcfrlem6.e 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem6.x (𝜑𝑋𝐸)
lcfrlem6.y (𝜑𝑌𝐸)
lcfrlem6.en (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
Assertion
Ref Expression
lcfrlem6 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Distinct variable groups:   + ,𝑔   𝑈,𝑔   𝑔,𝑋   𝑔,𝑌   𝜑,𝑔
Allowed substitution hints:   𝐷(𝑔)   𝑄(𝑔)   𝐸(𝑔)   𝐺(𝑔)   𝐻(𝑔)   𝐾(𝑔)   𝐿(𝑔)   𝑁(𝑔)   (𝑔)   𝑊(𝑔)

Proof of Theorem lcfrlem6
StepHypRef Expression
1 lcfrlem6.x . . . . . 6 (𝜑𝑋𝐸)
2 lcfrlem6.e . . . . . 6 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
31, 2eleqtrdi 2838 . . . . 5 (𝜑𝑋 𝑔𝐺 ( ‘(𝐿𝑔)))
4 eliun 4959 . . . . 5 (𝑋 𝑔𝐺 ( ‘(𝐿𝑔)) ↔ ∃𝑔𝐺 𝑋 ∈ ( ‘(𝐿𝑔)))
53, 4sylib 218 . . . 4 (𝜑 → ∃𝑔𝐺 𝑋 ∈ ( ‘(𝐿𝑔)))
6 lcfrlem6.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
7 lcfrlem6.u . . . . . . . . . 10 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 lcfrlem6.k . . . . . . . . . 10 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
96, 7, 8dvhlmod 41104 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
109adantr 480 . . . . . . . 8 ((𝜑𝑔𝐺) → 𝑈 ∈ LMod)
1110adantr 480 . . . . . . 7 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑈 ∈ LMod)
128adantr 480 . . . . . . . . 9 ((𝜑𝑔𝐺) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 eqid 2729 . . . . . . . . . 10 (Base‘𝑈) = (Base‘𝑈)
14 eqid 2729 . . . . . . . . . 10 (LFnl‘𝑈) = (LFnl‘𝑈)
15 lcfrlem6.l . . . . . . . . . 10 𝐿 = (LKer‘𝑈)
16 lcfrlem6.g . . . . . . . . . . . 12 (𝜑𝐺𝑄)
17 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝐷) = (Base‘𝐷)
18 lcfrlem6.q . . . . . . . . . . . . 13 𝑄 = (LSubSp‘𝐷)
1917, 18lssel 20843 . . . . . . . . . . . 12 ((𝐺𝑄𝑔𝐺) → 𝑔 ∈ (Base‘𝐷))
2016, 19sylan 580 . . . . . . . . . . 11 ((𝜑𝑔𝐺) → 𝑔 ∈ (Base‘𝐷))
21 lcfrlem6.d . . . . . . . . . . . . 13 𝐷 = (LDual‘𝑈)
2214, 21, 17, 9ldualvbase 39119 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐷) = (LFnl‘𝑈))
2322adantr 480 . . . . . . . . . . 11 ((𝜑𝑔𝐺) → (Base‘𝐷) = (LFnl‘𝑈))
2420, 23eleqtrd 2830 . . . . . . . . . 10 ((𝜑𝑔𝐺) → 𝑔 ∈ (LFnl‘𝑈))
2513, 14, 15, 10, 24lkrssv 39089 . . . . . . . . 9 ((𝜑𝑔𝐺) → (𝐿𝑔) ⊆ (Base‘𝑈))
26 eqid 2729 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
27 lcfrlem6.o . . . . . . . . . 10 = ((ocH‘𝐾)‘𝑊)
286, 7, 13, 26, 27dochlss 41348 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿𝑔) ⊆ (Base‘𝑈)) → ( ‘(𝐿𝑔)) ∈ (LSubSp‘𝑈))
2912, 25, 28syl2anc 584 . . . . . . . 8 ((𝜑𝑔𝐺) → ( ‘(𝐿𝑔)) ∈ (LSubSp‘𝑈))
3029adantr 480 . . . . . . 7 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → ( ‘(𝐿𝑔)) ∈ (LSubSp‘𝑈))
31 simpr 484 . . . . . . 7 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑋 ∈ ( ‘(𝐿𝑔)))
32 lcfrlem6.en . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
3332adantr 480 . . . . . . . . . . . 12 ((𝜑𝑔𝐺) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
3433adantr 480 . . . . . . . . . . 11 (((𝜑𝑔𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔))) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
35 simpr 484 . . . . . . . . . . 11 (((𝜑𝑔𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔))) → (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔)))
3634, 35eqsstrrd 3982 . . . . . . . . . 10 (((𝜑𝑔𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔))) → (𝑁‘{𝑌}) ⊆ ( ‘(𝐿𝑔)))
3736ex 412 . . . . . . . . 9 ((𝜑𝑔𝐺) → ((𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔)) → (𝑁‘{𝑌}) ⊆ ( ‘(𝐿𝑔))))
38 lcfrlem6.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑈)
396, 27, 7, 13, 15, 21, 18, 2, 8, 16, 1lcfrlem4 41539 . . . . . . . . . . 11 (𝜑𝑋 ∈ (Base‘𝑈))
4039adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐺) → 𝑋 ∈ (Base‘𝑈))
4113, 26, 38, 10, 29, 40ellspsn5b 20901 . . . . . . . . 9 ((𝜑𝑔𝐺) → (𝑋 ∈ ( ‘(𝐿𝑔)) ↔ (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔))))
42 lcfrlem6.y . . . . . . . . . . . 12 (𝜑𝑌𝐸)
436, 27, 7, 13, 15, 21, 18, 2, 8, 16, 42lcfrlem4 41539 . . . . . . . . . . 11 (𝜑𝑌 ∈ (Base‘𝑈))
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐺) → 𝑌 ∈ (Base‘𝑈))
4513, 26, 38, 10, 29, 44ellspsn5b 20901 . . . . . . . . 9 ((𝜑𝑔𝐺) → (𝑌 ∈ ( ‘(𝐿𝑔)) ↔ (𝑁‘{𝑌}) ⊆ ( ‘(𝐿𝑔))))
4637, 41, 453imtr4d 294 . . . . . . . 8 ((𝜑𝑔𝐺) → (𝑋 ∈ ( ‘(𝐿𝑔)) → 𝑌 ∈ ( ‘(𝐿𝑔))))
4746imp 406 . . . . . . 7 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑌 ∈ ( ‘(𝐿𝑔)))
48 lcfrlem6.p . . . . . . . 8 + = (+g𝑈)
4948, 26lssvacl 20849 . . . . . . 7 (((𝑈 ∈ LMod ∧ ( ‘(𝐿𝑔)) ∈ (LSubSp‘𝑈)) ∧ (𝑋 ∈ ( ‘(𝐿𝑔)) ∧ 𝑌 ∈ ( ‘(𝐿𝑔)))) → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5011, 30, 31, 47, 49syl22anc 838 . . . . . 6 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5150ex 412 . . . . 5 ((𝜑𝑔𝐺) → (𝑋 ∈ ( ‘(𝐿𝑔)) → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔))))
5251reximdva 3146 . . . 4 (𝜑 → (∃𝑔𝐺 𝑋 ∈ ( ‘(𝐿𝑔)) → ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔))))
535, 52mpd 15 . . 3 (𝜑 → ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
54 eliun 4959 . . 3 ((𝑋 + 𝑌) ∈ 𝑔𝐺 ( ‘(𝐿𝑔)) ↔ ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5553, 54sylibr 234 . 2 (𝜑 → (𝑋 + 𝑌) ∈ 𝑔𝐺 ( ‘(𝐿𝑔)))
5655, 2eleqtrrdi 2839 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  wss 3914  {csn 4589   ciun 4955  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  LModclmod 20766  LSubSpclss 20837  LSpanclspn 20877  LFnlclfn 39050  LKerclk 39078  LDualcld 39116  HLchlt 39343  LHypclh 39978  DVecHcdvh 41072  ocHcoch 41341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-undef 8252  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-0g 17404  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cntz 19249  df-lsm 19566  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lvec 21010  df-lfl 39051  df-lkr 39079  df-ldual 39117  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153  df-tendo 40749  df-edring 40751  df-disoa 41023  df-dvech 41073  df-dib 41133  df-dic 41167  df-dih 41223  df-doch 41342
This theorem is referenced by:  lcfrlem41  41577
  Copyright terms: Public domain W3C validator