Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem6 Structured version   Visualization version   GIF version

Theorem lcfrlem6 41504
Description: Lemma for lcfr 41542. Closure of vector sum with colinear vectors. TODO: Move down 𝑁 definition so top hypotheses can be shared. (Contributed by NM, 10-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem6.h 𝐻 = (LHyp‘𝐾)
lcfrlem6.o = ((ocH‘𝐾)‘𝑊)
lcfrlem6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem6.p + = (+g𝑈)
lcfrlem6.n 𝑁 = (LSpan‘𝑈)
lcfrlem6.l 𝐿 = (LKer‘𝑈)
lcfrlem6.d 𝐷 = (LDual‘𝑈)
lcfrlem6.q 𝑄 = (LSubSp‘𝐷)
lcfrlem6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem6.g (𝜑𝐺𝑄)
lcfrlem6.e 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem6.x (𝜑𝑋𝐸)
lcfrlem6.y (𝜑𝑌𝐸)
lcfrlem6.en (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
Assertion
Ref Expression
lcfrlem6 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Distinct variable groups:   + ,𝑔   𝑈,𝑔   𝑔,𝑋   𝑔,𝑌   𝜑,𝑔
Allowed substitution hints:   𝐷(𝑔)   𝑄(𝑔)   𝐸(𝑔)   𝐺(𝑔)   𝐻(𝑔)   𝐾(𝑔)   𝐿(𝑔)   𝑁(𝑔)   (𝑔)   𝑊(𝑔)

Proof of Theorem lcfrlem6
StepHypRef Expression
1 lcfrlem6.x . . . . . 6 (𝜑𝑋𝐸)
2 lcfrlem6.e . . . . . 6 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
31, 2eleqtrdi 2854 . . . . 5 (𝜑𝑋 𝑔𝐺 ( ‘(𝐿𝑔)))
4 eliun 5019 . . . . 5 (𝑋 𝑔𝐺 ( ‘(𝐿𝑔)) ↔ ∃𝑔𝐺 𝑋 ∈ ( ‘(𝐿𝑔)))
53, 4sylib 218 . . . 4 (𝜑 → ∃𝑔𝐺 𝑋 ∈ ( ‘(𝐿𝑔)))
6 lcfrlem6.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
7 lcfrlem6.u . . . . . . . . . 10 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 lcfrlem6.k . . . . . . . . . 10 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
96, 7, 8dvhlmod 41067 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
109adantr 480 . . . . . . . 8 ((𝜑𝑔𝐺) → 𝑈 ∈ LMod)
1110adantr 480 . . . . . . 7 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑈 ∈ LMod)
128adantr 480 . . . . . . . . 9 ((𝜑𝑔𝐺) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 eqid 2740 . . . . . . . . . 10 (Base‘𝑈) = (Base‘𝑈)
14 eqid 2740 . . . . . . . . . 10 (LFnl‘𝑈) = (LFnl‘𝑈)
15 lcfrlem6.l . . . . . . . . . 10 𝐿 = (LKer‘𝑈)
16 lcfrlem6.g . . . . . . . . . . . 12 (𝜑𝐺𝑄)
17 eqid 2740 . . . . . . . . . . . . 13 (Base‘𝐷) = (Base‘𝐷)
18 lcfrlem6.q . . . . . . . . . . . . 13 𝑄 = (LSubSp‘𝐷)
1917, 18lssel 20958 . . . . . . . . . . . 12 ((𝐺𝑄𝑔𝐺) → 𝑔 ∈ (Base‘𝐷))
2016, 19sylan 579 . . . . . . . . . . 11 ((𝜑𝑔𝐺) → 𝑔 ∈ (Base‘𝐷))
21 lcfrlem6.d . . . . . . . . . . . . 13 𝐷 = (LDual‘𝑈)
2214, 21, 17, 9ldualvbase 39082 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐷) = (LFnl‘𝑈))
2322adantr 480 . . . . . . . . . . 11 ((𝜑𝑔𝐺) → (Base‘𝐷) = (LFnl‘𝑈))
2420, 23eleqtrd 2846 . . . . . . . . . 10 ((𝜑𝑔𝐺) → 𝑔 ∈ (LFnl‘𝑈))
2513, 14, 15, 10, 24lkrssv 39052 . . . . . . . . 9 ((𝜑𝑔𝐺) → (𝐿𝑔) ⊆ (Base‘𝑈))
26 eqid 2740 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
27 lcfrlem6.o . . . . . . . . . 10 = ((ocH‘𝐾)‘𝑊)
286, 7, 13, 26, 27dochlss 41311 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿𝑔) ⊆ (Base‘𝑈)) → ( ‘(𝐿𝑔)) ∈ (LSubSp‘𝑈))
2912, 25, 28syl2anc 583 . . . . . . . 8 ((𝜑𝑔𝐺) → ( ‘(𝐿𝑔)) ∈ (LSubSp‘𝑈))
3029adantr 480 . . . . . . 7 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → ( ‘(𝐿𝑔)) ∈ (LSubSp‘𝑈))
31 simpr 484 . . . . . . 7 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑋 ∈ ( ‘(𝐿𝑔)))
32 lcfrlem6.en . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
3332adantr 480 . . . . . . . . . . . 12 ((𝜑𝑔𝐺) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
3433adantr 480 . . . . . . . . . . 11 (((𝜑𝑔𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔))) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
35 simpr 484 . . . . . . . . . . 11 (((𝜑𝑔𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔))) → (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔)))
3634, 35eqsstrrd 4048 . . . . . . . . . 10 (((𝜑𝑔𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔))) → (𝑁‘{𝑌}) ⊆ ( ‘(𝐿𝑔)))
3736ex 412 . . . . . . . . 9 ((𝜑𝑔𝐺) → ((𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔)) → (𝑁‘{𝑌}) ⊆ ( ‘(𝐿𝑔))))
38 lcfrlem6.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑈)
396, 27, 7, 13, 15, 21, 18, 2, 8, 16, 1lcfrlem4 41502 . . . . . . . . . . 11 (𝜑𝑋 ∈ (Base‘𝑈))
4039adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐺) → 𝑋 ∈ (Base‘𝑈))
4113, 26, 38, 10, 29, 40ellspsn5b 21016 . . . . . . . . 9 ((𝜑𝑔𝐺) → (𝑋 ∈ ( ‘(𝐿𝑔)) ↔ (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔))))
42 lcfrlem6.y . . . . . . . . . . . 12 (𝜑𝑌𝐸)
436, 27, 7, 13, 15, 21, 18, 2, 8, 16, 42lcfrlem4 41502 . . . . . . . . . . 11 (𝜑𝑌 ∈ (Base‘𝑈))
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐺) → 𝑌 ∈ (Base‘𝑈))
4513, 26, 38, 10, 29, 44ellspsn5b 21016 . . . . . . . . 9 ((𝜑𝑔𝐺) → (𝑌 ∈ ( ‘(𝐿𝑔)) ↔ (𝑁‘{𝑌}) ⊆ ( ‘(𝐿𝑔))))
4637, 41, 453imtr4d 294 . . . . . . . 8 ((𝜑𝑔𝐺) → (𝑋 ∈ ( ‘(𝐿𝑔)) → 𝑌 ∈ ( ‘(𝐿𝑔))))
4746imp 406 . . . . . . 7 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑌 ∈ ( ‘(𝐿𝑔)))
48 lcfrlem6.p . . . . . . . 8 + = (+g𝑈)
4948, 26lssvacl 20964 . . . . . . 7 (((𝑈 ∈ LMod ∧ ( ‘(𝐿𝑔)) ∈ (LSubSp‘𝑈)) ∧ (𝑋 ∈ ( ‘(𝐿𝑔)) ∧ 𝑌 ∈ ( ‘(𝐿𝑔)))) → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5011, 30, 31, 47, 49syl22anc 838 . . . . . 6 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5150ex 412 . . . . 5 ((𝜑𝑔𝐺) → (𝑋 ∈ ( ‘(𝐿𝑔)) → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔))))
5251reximdva 3174 . . . 4 (𝜑 → (∃𝑔𝐺 𝑋 ∈ ( ‘(𝐿𝑔)) → ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔))))
535, 52mpd 15 . . 3 (𝜑 → ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
54 eliun 5019 . . 3 ((𝑋 + 𝑌) ∈ 𝑔𝐺 ( ‘(𝐿𝑔)) ↔ ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5553, 54sylibr 234 . 2 (𝜑 → (𝑋 + 𝑌) ∈ 𝑔𝐺 ( ‘(𝐿𝑔)))
5655, 2eleqtrrdi 2855 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  wss 3976  {csn 4648   ciun 5015  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  LModclmod 20880  LSubSpclss 20952  LSpanclspn 20992  LFnlclfn 39013  LKerclk 39041  LDualcld 39079  HLchlt 39306  LHypclh 39941  DVecHcdvh 41035  ocHcoch 41304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-undef 8314  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-0g 17501  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lvec 21125  df-lfl 39014  df-lkr 39042  df-ldual 39080  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116  df-tendo 40712  df-edring 40714  df-disoa 40986  df-dvech 41036  df-dib 41096  df-dic 41130  df-dih 41186  df-doch 41305
This theorem is referenced by:  lcfrlem41  41540
  Copyright terms: Public domain W3C validator