Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem6 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 39526. Closure of vector sum with colinear vectors. TODO: Move down 𝑁 definition so top hypotheses can be shared. (Contributed by NM, 10-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem6.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem6.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem6.p | ⊢ + = (+g‘𝑈) |
lcfrlem6.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem6.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfrlem6.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem6.q | ⊢ 𝑄 = (LSubSp‘𝐷) |
lcfrlem6.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem6.g | ⊢ (𝜑 → 𝐺 ∈ 𝑄) |
lcfrlem6.e | ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) |
lcfrlem6.x | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
lcfrlem6.y | ⊢ (𝜑 → 𝑌 ∈ 𝐸) |
lcfrlem6.en | ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
Ref | Expression |
---|---|
lcfrlem6 | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem6.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
2 | lcfrlem6.e | . . . . . 6 ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) | |
3 | 1, 2 | eleqtrdi 2849 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔))) |
4 | eliun 4925 | . . . . 5 ⊢ (𝑋 ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) ↔ ∃𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) | |
5 | 3, 4 | sylib 217 | . . . 4 ⊢ (𝜑 → ∃𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) |
6 | lcfrlem6.h | . . . . . . . . . 10 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | lcfrlem6.u | . . . . . . . . . 10 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
8 | lcfrlem6.k | . . . . . . . . . 10 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
9 | 6, 7, 8 | dvhlmod 39051 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ LMod) |
10 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑈 ∈ LMod) |
11 | 10 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑈 ∈ LMod) |
12 | 8 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
13 | eqid 2738 | . . . . . . . . . 10 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
14 | eqid 2738 | . . . . . . . . . 10 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
15 | lcfrlem6.l | . . . . . . . . . 10 ⊢ 𝐿 = (LKer‘𝑈) | |
16 | lcfrlem6.g | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐺 ∈ 𝑄) | |
17 | eqid 2738 | . . . . . . . . . . . . 13 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
18 | lcfrlem6.q | . . . . . . . . . . . . 13 ⊢ 𝑄 = (LSubSp‘𝐷) | |
19 | 17, 18 | lssel 20114 | . . . . . . . . . . . 12 ⊢ ((𝐺 ∈ 𝑄 ∧ 𝑔 ∈ 𝐺) → 𝑔 ∈ (Base‘𝐷)) |
20 | 16, 19 | sylan 579 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑔 ∈ (Base‘𝐷)) |
21 | lcfrlem6.d | . . . . . . . . . . . . 13 ⊢ 𝐷 = (LDual‘𝑈) | |
22 | 14, 21, 17, 9 | ldualvbase 37067 | . . . . . . . . . . . 12 ⊢ (𝜑 → (Base‘𝐷) = (LFnl‘𝑈)) |
23 | 22 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (Base‘𝐷) = (LFnl‘𝑈)) |
24 | 20, 23 | eleqtrd 2841 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑔 ∈ (LFnl‘𝑈)) |
25 | 13, 14, 15, 10, 24 | lkrssv 37037 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝐿‘𝑔) ⊆ (Base‘𝑈)) |
26 | eqid 2738 | . . . . . . . . . 10 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
27 | lcfrlem6.o | . . . . . . . . . 10 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
28 | 6, 7, 13, 26, 27 | dochlss 39295 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝑔) ⊆ (Base‘𝑈)) → ( ⊥ ‘(𝐿‘𝑔)) ∈ (LSubSp‘𝑈)) |
29 | 12, 25, 28 | syl2anc 583 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → ( ⊥ ‘(𝐿‘𝑔)) ∈ (LSubSp‘𝑈)) |
30 | 29 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → ( ⊥ ‘(𝐿‘𝑔)) ∈ (LSubSp‘𝑈)) |
31 | simpr 484 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) | |
32 | lcfrlem6.en | . . . . . . . . . . . . 13 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) | |
33 | 32 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
34 | 33 | adantr 480 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
35 | simpr 484 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) → (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) | |
36 | 34, 35 | eqsstrrd 3956 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) → (𝑁‘{𝑌}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) |
37 | 36 | ex 412 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → ((𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔)) → (𝑁‘{𝑌}) ⊆ ( ⊥ ‘(𝐿‘𝑔)))) |
38 | lcfrlem6.n | . . . . . . . . . 10 ⊢ 𝑁 = (LSpan‘𝑈) | |
39 | 6, 27, 7, 13, 15, 21, 18, 2, 8, 16, 1 | lcfrlem4 39486 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) |
40 | 39 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑋 ∈ (Base‘𝑈)) |
41 | 13, 26, 38, 10, 29, 40 | lspsnel5 20172 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) ↔ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔)))) |
42 | lcfrlem6.y | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑌 ∈ 𝐸) | |
43 | 6, 27, 7, 13, 15, 21, 18, 2, 8, 16, 42 | lcfrlem4 39486 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑈)) |
44 | 43 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑌 ∈ (Base‘𝑈)) |
45 | 13, 26, 38, 10, 29, 44 | lspsnel5 20172 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑌 ∈ ( ⊥ ‘(𝐿‘𝑔)) ↔ (𝑁‘{𝑌}) ⊆ ( ⊥ ‘(𝐿‘𝑔)))) |
46 | 37, 41, 45 | 3imtr4d 293 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) → 𝑌 ∈ ( ⊥ ‘(𝐿‘𝑔)))) |
47 | 46 | imp 406 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑌 ∈ ( ⊥ ‘(𝐿‘𝑔))) |
48 | lcfrlem6.p | . . . . . . . 8 ⊢ + = (+g‘𝑈) | |
49 | 48, 26 | lssvacl 20131 | . . . . . . 7 ⊢ (((𝑈 ∈ LMod ∧ ( ⊥ ‘(𝐿‘𝑔)) ∈ (LSubSp‘𝑈)) ∧ (𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) ∧ 𝑌 ∈ ( ⊥ ‘(𝐿‘𝑔)))) → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) |
50 | 11, 30, 31, 47, 49 | syl22anc 835 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) |
51 | 50 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔)))) |
52 | 51 | reximdva 3202 | . . . 4 ⊢ (𝜑 → (∃𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) → ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔)))) |
53 | 5, 52 | mpd 15 | . . 3 ⊢ (𝜑 → ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) |
54 | eliun 4925 | . . 3 ⊢ ((𝑋 + 𝑌) ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) ↔ ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) | |
55 | 53, 54 | sylibr 233 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔))) |
56 | 55, 2 | eleqtrrdi 2850 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 {csn 4558 ∪ ciun 4921 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 LModclmod 20038 LSubSpclss 20108 LSpanclspn 20148 LFnlclfn 36998 LKerclk 37026 LDualcld 37064 HLchlt 37291 LHypclh 37925 DVecHcdvh 39019 ocHcoch 39288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-undef 8060 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-0g 17069 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-cntz 18838 df-lsm 19156 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lvec 20280 df-lfl 36999 df-lkr 37027 df-ldual 37065 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-llines 37439 df-lplanes 37440 df-lvols 37441 df-lines 37442 df-psubsp 37444 df-pmap 37445 df-padd 37737 df-lhyp 37929 df-laut 37930 df-ldil 38045 df-ltrn 38046 df-trl 38100 df-tendo 38696 df-edring 38698 df-disoa 38970 df-dvech 39020 df-dib 39080 df-dic 39114 df-dih 39170 df-doch 39289 |
This theorem is referenced by: lcfrlem41 39524 |
Copyright terms: Public domain | W3C validator |