| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for lcfr 41704. Closure of vector sum with colinear vectors. TODO: Move down 𝑁 definition so top hypotheses can be shared. (Contributed by NM, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| lcfrlem6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lcfrlem6.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| lcfrlem6.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lcfrlem6.p | ⊢ + = (+g‘𝑈) |
| lcfrlem6.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| lcfrlem6.l | ⊢ 𝐿 = (LKer‘𝑈) |
| lcfrlem6.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lcfrlem6.q | ⊢ 𝑄 = (LSubSp‘𝐷) |
| lcfrlem6.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| lcfrlem6.g | ⊢ (𝜑 → 𝐺 ∈ 𝑄) |
| lcfrlem6.e | ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) |
| lcfrlem6.x | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
| lcfrlem6.y | ⊢ (𝜑 → 𝑌 ∈ 𝐸) |
| lcfrlem6.en | ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
| Ref | Expression |
|---|---|
| lcfrlem6 | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcfrlem6.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
| 2 | lcfrlem6.e | . . . . . 6 ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) | |
| 3 | 1, 2 | eleqtrdi 2843 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔))) |
| 4 | eliun 4945 | . . . . 5 ⊢ (𝑋 ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) ↔ ∃𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) | |
| 5 | 3, 4 | sylib 218 | . . . 4 ⊢ (𝜑 → ∃𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) |
| 6 | lcfrlem6.h | . . . . . . . . . 10 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | lcfrlem6.u | . . . . . . . . . 10 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 8 | lcfrlem6.k | . . . . . . . . . 10 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 9 | 6, 7, 8 | dvhlmod 41229 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 10 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑈 ∈ LMod) |
| 11 | 10 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑈 ∈ LMod) |
| 12 | 8 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 13 | eqid 2733 | . . . . . . . . . 10 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 14 | eqid 2733 | . . . . . . . . . 10 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
| 15 | lcfrlem6.l | . . . . . . . . . 10 ⊢ 𝐿 = (LKer‘𝑈) | |
| 16 | lcfrlem6.g | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐺 ∈ 𝑄) | |
| 17 | eqid 2733 | . . . . . . . . . . . . 13 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 18 | lcfrlem6.q | . . . . . . . . . . . . 13 ⊢ 𝑄 = (LSubSp‘𝐷) | |
| 19 | 17, 18 | lssel 20872 | . . . . . . . . . . . 12 ⊢ ((𝐺 ∈ 𝑄 ∧ 𝑔 ∈ 𝐺) → 𝑔 ∈ (Base‘𝐷)) |
| 20 | 16, 19 | sylan 580 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑔 ∈ (Base‘𝐷)) |
| 21 | lcfrlem6.d | . . . . . . . . . . . . 13 ⊢ 𝐷 = (LDual‘𝑈) | |
| 22 | 14, 21, 17, 9 | ldualvbase 39245 | . . . . . . . . . . . 12 ⊢ (𝜑 → (Base‘𝐷) = (LFnl‘𝑈)) |
| 23 | 22 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (Base‘𝐷) = (LFnl‘𝑈)) |
| 24 | 20, 23 | eleqtrd 2835 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑔 ∈ (LFnl‘𝑈)) |
| 25 | 13, 14, 15, 10, 24 | lkrssv 39215 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝐿‘𝑔) ⊆ (Base‘𝑈)) |
| 26 | eqid 2733 | . . . . . . . . . 10 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 27 | lcfrlem6.o | . . . . . . . . . 10 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 28 | 6, 7, 13, 26, 27 | dochlss 41473 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝑔) ⊆ (Base‘𝑈)) → ( ⊥ ‘(𝐿‘𝑔)) ∈ (LSubSp‘𝑈)) |
| 29 | 12, 25, 28 | syl2anc 584 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → ( ⊥ ‘(𝐿‘𝑔)) ∈ (LSubSp‘𝑈)) |
| 30 | 29 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → ( ⊥ ‘(𝐿‘𝑔)) ∈ (LSubSp‘𝑈)) |
| 31 | simpr 484 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) | |
| 32 | lcfrlem6.en | . . . . . . . . . . . . 13 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) | |
| 33 | 32 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
| 34 | 33 | adantr 480 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
| 35 | simpr 484 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) → (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) | |
| 36 | 34, 35 | eqsstrrd 3966 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) → (𝑁‘{𝑌}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) |
| 37 | 36 | ex 412 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → ((𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔)) → (𝑁‘{𝑌}) ⊆ ( ⊥ ‘(𝐿‘𝑔)))) |
| 38 | lcfrlem6.n | . . . . . . . . . 10 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 39 | 6, 27, 7, 13, 15, 21, 18, 2, 8, 16, 1 | lcfrlem4 41664 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) |
| 40 | 39 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑋 ∈ (Base‘𝑈)) |
| 41 | 13, 26, 38, 10, 29, 40 | ellspsn5b 20930 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) ↔ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔)))) |
| 42 | lcfrlem6.y | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑌 ∈ 𝐸) | |
| 43 | 6, 27, 7, 13, 15, 21, 18, 2, 8, 16, 42 | lcfrlem4 41664 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑈)) |
| 44 | 43 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑌 ∈ (Base‘𝑈)) |
| 45 | 13, 26, 38, 10, 29, 44 | ellspsn5b 20930 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑌 ∈ ( ⊥ ‘(𝐿‘𝑔)) ↔ (𝑁‘{𝑌}) ⊆ ( ⊥ ‘(𝐿‘𝑔)))) |
| 46 | 37, 41, 45 | 3imtr4d 294 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) → 𝑌 ∈ ( ⊥ ‘(𝐿‘𝑔)))) |
| 47 | 46 | imp 406 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑌 ∈ ( ⊥ ‘(𝐿‘𝑔))) |
| 48 | lcfrlem6.p | . . . . . . . 8 ⊢ + = (+g‘𝑈) | |
| 49 | 48, 26 | lssvacl 20878 | . . . . . . 7 ⊢ (((𝑈 ∈ LMod ∧ ( ⊥ ‘(𝐿‘𝑔)) ∈ (LSubSp‘𝑈)) ∧ (𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) ∧ 𝑌 ∈ ( ⊥ ‘(𝐿‘𝑔)))) → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) |
| 50 | 11, 30, 31, 47, 49 | syl22anc 838 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) |
| 51 | 50 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔)))) |
| 52 | 51 | reximdva 3146 | . . . 4 ⊢ (𝜑 → (∃𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) → ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔)))) |
| 53 | 5, 52 | mpd 15 | . . 3 ⊢ (𝜑 → ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) |
| 54 | eliun 4945 | . . 3 ⊢ ((𝑋 + 𝑌) ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) ↔ ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) | |
| 55 | 53, 54 | sylibr 234 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔))) |
| 56 | 55, 2 | eleqtrrdi 2844 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ⊆ wss 3898 {csn 4575 ∪ ciun 4941 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 LModclmod 20795 LSubSpclss 20866 LSpanclspn 20906 LFnlclfn 39176 LKerclk 39204 LDualcld 39242 HLchlt 39469 LHypclh 40103 DVecHcdvh 41197 ocHcoch 41466 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-riotaBAD 39072 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-undef 8209 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-0g 17347 df-proset 18202 df-poset 18221 df-plt 18236 df-lub 18252 df-glb 18253 df-join 18254 df-meet 18255 df-p0 18331 df-p1 18332 df-lat 18340 df-clat 18407 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-cntz 19231 df-lsm 19550 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-drng 20648 df-lmod 20797 df-lss 20867 df-lsp 20907 df-lvec 21039 df-lfl 39177 df-lkr 39205 df-ldual 39243 df-oposet 39295 df-ol 39297 df-oml 39298 df-covers 39385 df-ats 39386 df-atl 39417 df-cvlat 39441 df-hlat 39470 df-llines 39617 df-lplanes 39618 df-lvols 39619 df-lines 39620 df-psubsp 39622 df-pmap 39623 df-padd 39915 df-lhyp 40107 df-laut 40108 df-ldil 40223 df-ltrn 40224 df-trl 40278 df-tendo 40874 df-edring 40876 df-disoa 41148 df-dvech 41198 df-dib 41258 df-dic 41292 df-dih 41348 df-doch 41467 |
| This theorem is referenced by: lcfrlem41 41702 |
| Copyright terms: Public domain | W3C validator |