![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem6 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 41542. Closure of vector sum with colinear vectors. TODO: Move down 𝑁 definition so top hypotheses can be shared. (Contributed by NM, 10-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem6.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem6.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem6.p | ⊢ + = (+g‘𝑈) |
lcfrlem6.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem6.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfrlem6.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem6.q | ⊢ 𝑄 = (LSubSp‘𝐷) |
lcfrlem6.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem6.g | ⊢ (𝜑 → 𝐺 ∈ 𝑄) |
lcfrlem6.e | ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) |
lcfrlem6.x | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
lcfrlem6.y | ⊢ (𝜑 → 𝑌 ∈ 𝐸) |
lcfrlem6.en | ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
Ref | Expression |
---|---|
lcfrlem6 | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem6.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
2 | lcfrlem6.e | . . . . . 6 ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) | |
3 | 1, 2 | eleqtrdi 2854 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔))) |
4 | eliun 5019 | . . . . 5 ⊢ (𝑋 ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) ↔ ∃𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) | |
5 | 3, 4 | sylib 218 | . . . 4 ⊢ (𝜑 → ∃𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) |
6 | lcfrlem6.h | . . . . . . . . . 10 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | lcfrlem6.u | . . . . . . . . . 10 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
8 | lcfrlem6.k | . . . . . . . . . 10 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
9 | 6, 7, 8 | dvhlmod 41067 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ LMod) |
10 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑈 ∈ LMod) |
11 | 10 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑈 ∈ LMod) |
12 | 8 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
13 | eqid 2740 | . . . . . . . . . 10 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
14 | eqid 2740 | . . . . . . . . . 10 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
15 | lcfrlem6.l | . . . . . . . . . 10 ⊢ 𝐿 = (LKer‘𝑈) | |
16 | lcfrlem6.g | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐺 ∈ 𝑄) | |
17 | eqid 2740 | . . . . . . . . . . . . 13 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
18 | lcfrlem6.q | . . . . . . . . . . . . 13 ⊢ 𝑄 = (LSubSp‘𝐷) | |
19 | 17, 18 | lssel 20958 | . . . . . . . . . . . 12 ⊢ ((𝐺 ∈ 𝑄 ∧ 𝑔 ∈ 𝐺) → 𝑔 ∈ (Base‘𝐷)) |
20 | 16, 19 | sylan 579 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑔 ∈ (Base‘𝐷)) |
21 | lcfrlem6.d | . . . . . . . . . . . . 13 ⊢ 𝐷 = (LDual‘𝑈) | |
22 | 14, 21, 17, 9 | ldualvbase 39082 | . . . . . . . . . . . 12 ⊢ (𝜑 → (Base‘𝐷) = (LFnl‘𝑈)) |
23 | 22 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (Base‘𝐷) = (LFnl‘𝑈)) |
24 | 20, 23 | eleqtrd 2846 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑔 ∈ (LFnl‘𝑈)) |
25 | 13, 14, 15, 10, 24 | lkrssv 39052 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝐿‘𝑔) ⊆ (Base‘𝑈)) |
26 | eqid 2740 | . . . . . . . . . 10 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
27 | lcfrlem6.o | . . . . . . . . . 10 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
28 | 6, 7, 13, 26, 27 | dochlss 41311 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝑔) ⊆ (Base‘𝑈)) → ( ⊥ ‘(𝐿‘𝑔)) ∈ (LSubSp‘𝑈)) |
29 | 12, 25, 28 | syl2anc 583 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → ( ⊥ ‘(𝐿‘𝑔)) ∈ (LSubSp‘𝑈)) |
30 | 29 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → ( ⊥ ‘(𝐿‘𝑔)) ∈ (LSubSp‘𝑈)) |
31 | simpr 484 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) | |
32 | lcfrlem6.en | . . . . . . . . . . . . 13 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) | |
33 | 32 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
34 | 33 | adantr 480 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
35 | simpr 484 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) → (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) | |
36 | 34, 35 | eqsstrrd 4048 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) → (𝑁‘{𝑌}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) |
37 | 36 | ex 412 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → ((𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔)) → (𝑁‘{𝑌}) ⊆ ( ⊥ ‘(𝐿‘𝑔)))) |
38 | lcfrlem6.n | . . . . . . . . . 10 ⊢ 𝑁 = (LSpan‘𝑈) | |
39 | 6, 27, 7, 13, 15, 21, 18, 2, 8, 16, 1 | lcfrlem4 41502 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) |
40 | 39 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑋 ∈ (Base‘𝑈)) |
41 | 13, 26, 38, 10, 29, 40 | ellspsn5b 21016 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) ↔ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔)))) |
42 | lcfrlem6.y | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑌 ∈ 𝐸) | |
43 | 6, 27, 7, 13, 15, 21, 18, 2, 8, 16, 42 | lcfrlem4 41502 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑈)) |
44 | 43 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑌 ∈ (Base‘𝑈)) |
45 | 13, 26, 38, 10, 29, 44 | ellspsn5b 21016 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑌 ∈ ( ⊥ ‘(𝐿‘𝑔)) ↔ (𝑁‘{𝑌}) ⊆ ( ⊥ ‘(𝐿‘𝑔)))) |
46 | 37, 41, 45 | 3imtr4d 294 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) → 𝑌 ∈ ( ⊥ ‘(𝐿‘𝑔)))) |
47 | 46 | imp 406 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑌 ∈ ( ⊥ ‘(𝐿‘𝑔))) |
48 | lcfrlem6.p | . . . . . . . 8 ⊢ + = (+g‘𝑈) | |
49 | 48, 26 | lssvacl 20964 | . . . . . . 7 ⊢ (((𝑈 ∈ LMod ∧ ( ⊥ ‘(𝐿‘𝑔)) ∈ (LSubSp‘𝑈)) ∧ (𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) ∧ 𝑌 ∈ ( ⊥ ‘(𝐿‘𝑔)))) → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) |
50 | 11, 30, 31, 47, 49 | syl22anc 838 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) |
51 | 50 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔)))) |
52 | 51 | reximdva 3174 | . . . 4 ⊢ (𝜑 → (∃𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) → ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔)))) |
53 | 5, 52 | mpd 15 | . . 3 ⊢ (𝜑 → ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) |
54 | eliun 5019 | . . 3 ⊢ ((𝑋 + 𝑌) ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) ↔ ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) | |
55 | 53, 54 | sylibr 234 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔))) |
56 | 55, 2 | eleqtrrdi 2855 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ⊆ wss 3976 {csn 4648 ∪ ciun 5015 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 LModclmod 20880 LSubSpclss 20952 LSpanclspn 20992 LFnlclfn 39013 LKerclk 39041 LDualcld 39079 HLchlt 39306 LHypclh 39941 DVecHcdvh 41035 ocHcoch 41304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-riotaBAD 38909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-undef 8314 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-0g 17501 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cntz 19357 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lvec 21125 df-lfl 39014 df-lkr 39042 df-ldual 39080 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-tendo 40712 df-edring 40714 df-disoa 40986 df-dvech 41036 df-dib 41096 df-dic 41130 df-dih 41186 df-doch 41305 |
This theorem is referenced by: lcfrlem41 41540 |
Copyright terms: Public domain | W3C validator |