Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem6 Structured version   Visualization version   GIF version

Theorem lcfrlem6 41526
Description: Lemma for lcfr 41564. Closure of vector sum with colinear vectors. TODO: Move down 𝑁 definition so top hypotheses can be shared. (Contributed by NM, 10-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem6.h 𝐻 = (LHyp‘𝐾)
lcfrlem6.o = ((ocH‘𝐾)‘𝑊)
lcfrlem6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem6.p + = (+g𝑈)
lcfrlem6.n 𝑁 = (LSpan‘𝑈)
lcfrlem6.l 𝐿 = (LKer‘𝑈)
lcfrlem6.d 𝐷 = (LDual‘𝑈)
lcfrlem6.q 𝑄 = (LSubSp‘𝐷)
lcfrlem6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem6.g (𝜑𝐺𝑄)
lcfrlem6.e 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem6.x (𝜑𝑋𝐸)
lcfrlem6.y (𝜑𝑌𝐸)
lcfrlem6.en (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
Assertion
Ref Expression
lcfrlem6 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Distinct variable groups:   + ,𝑔   𝑈,𝑔   𝑔,𝑋   𝑔,𝑌   𝜑,𝑔
Allowed substitution hints:   𝐷(𝑔)   𝑄(𝑔)   𝐸(𝑔)   𝐺(𝑔)   𝐻(𝑔)   𝐾(𝑔)   𝐿(𝑔)   𝑁(𝑔)   (𝑔)   𝑊(𝑔)

Proof of Theorem lcfrlem6
StepHypRef Expression
1 lcfrlem6.x . . . . . 6 (𝜑𝑋𝐸)
2 lcfrlem6.e . . . . . 6 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
31, 2eleqtrdi 2838 . . . . 5 (𝜑𝑋 𝑔𝐺 ( ‘(𝐿𝑔)))
4 eliun 4948 . . . . 5 (𝑋 𝑔𝐺 ( ‘(𝐿𝑔)) ↔ ∃𝑔𝐺 𝑋 ∈ ( ‘(𝐿𝑔)))
53, 4sylib 218 . . . 4 (𝜑 → ∃𝑔𝐺 𝑋 ∈ ( ‘(𝐿𝑔)))
6 lcfrlem6.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
7 lcfrlem6.u . . . . . . . . . 10 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 lcfrlem6.k . . . . . . . . . 10 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
96, 7, 8dvhlmod 41089 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
109adantr 480 . . . . . . . 8 ((𝜑𝑔𝐺) → 𝑈 ∈ LMod)
1110adantr 480 . . . . . . 7 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑈 ∈ LMod)
128adantr 480 . . . . . . . . 9 ((𝜑𝑔𝐺) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 eqid 2729 . . . . . . . . . 10 (Base‘𝑈) = (Base‘𝑈)
14 eqid 2729 . . . . . . . . . 10 (LFnl‘𝑈) = (LFnl‘𝑈)
15 lcfrlem6.l . . . . . . . . . 10 𝐿 = (LKer‘𝑈)
16 lcfrlem6.g . . . . . . . . . . . 12 (𝜑𝐺𝑄)
17 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝐷) = (Base‘𝐷)
18 lcfrlem6.q . . . . . . . . . . . . 13 𝑄 = (LSubSp‘𝐷)
1917, 18lssel 20858 . . . . . . . . . . . 12 ((𝐺𝑄𝑔𝐺) → 𝑔 ∈ (Base‘𝐷))
2016, 19sylan 580 . . . . . . . . . . 11 ((𝜑𝑔𝐺) → 𝑔 ∈ (Base‘𝐷))
21 lcfrlem6.d . . . . . . . . . . . . 13 𝐷 = (LDual‘𝑈)
2214, 21, 17, 9ldualvbase 39104 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐷) = (LFnl‘𝑈))
2322adantr 480 . . . . . . . . . . 11 ((𝜑𝑔𝐺) → (Base‘𝐷) = (LFnl‘𝑈))
2420, 23eleqtrd 2830 . . . . . . . . . 10 ((𝜑𝑔𝐺) → 𝑔 ∈ (LFnl‘𝑈))
2513, 14, 15, 10, 24lkrssv 39074 . . . . . . . . 9 ((𝜑𝑔𝐺) → (𝐿𝑔) ⊆ (Base‘𝑈))
26 eqid 2729 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
27 lcfrlem6.o . . . . . . . . . 10 = ((ocH‘𝐾)‘𝑊)
286, 7, 13, 26, 27dochlss 41333 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿𝑔) ⊆ (Base‘𝑈)) → ( ‘(𝐿𝑔)) ∈ (LSubSp‘𝑈))
2912, 25, 28syl2anc 584 . . . . . . . 8 ((𝜑𝑔𝐺) → ( ‘(𝐿𝑔)) ∈ (LSubSp‘𝑈))
3029adantr 480 . . . . . . 7 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → ( ‘(𝐿𝑔)) ∈ (LSubSp‘𝑈))
31 simpr 484 . . . . . . 7 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑋 ∈ ( ‘(𝐿𝑔)))
32 lcfrlem6.en . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
3332adantr 480 . . . . . . . . . . . 12 ((𝜑𝑔𝐺) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
3433adantr 480 . . . . . . . . . . 11 (((𝜑𝑔𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔))) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
35 simpr 484 . . . . . . . . . . 11 (((𝜑𝑔𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔))) → (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔)))
3634, 35eqsstrrd 3973 . . . . . . . . . 10 (((𝜑𝑔𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔))) → (𝑁‘{𝑌}) ⊆ ( ‘(𝐿𝑔)))
3736ex 412 . . . . . . . . 9 ((𝜑𝑔𝐺) → ((𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔)) → (𝑁‘{𝑌}) ⊆ ( ‘(𝐿𝑔))))
38 lcfrlem6.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑈)
396, 27, 7, 13, 15, 21, 18, 2, 8, 16, 1lcfrlem4 41524 . . . . . . . . . . 11 (𝜑𝑋 ∈ (Base‘𝑈))
4039adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐺) → 𝑋 ∈ (Base‘𝑈))
4113, 26, 38, 10, 29, 40ellspsn5b 20916 . . . . . . . . 9 ((𝜑𝑔𝐺) → (𝑋 ∈ ( ‘(𝐿𝑔)) ↔ (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔))))
42 lcfrlem6.y . . . . . . . . . . . 12 (𝜑𝑌𝐸)
436, 27, 7, 13, 15, 21, 18, 2, 8, 16, 42lcfrlem4 41524 . . . . . . . . . . 11 (𝜑𝑌 ∈ (Base‘𝑈))
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐺) → 𝑌 ∈ (Base‘𝑈))
4513, 26, 38, 10, 29, 44ellspsn5b 20916 . . . . . . . . 9 ((𝜑𝑔𝐺) → (𝑌 ∈ ( ‘(𝐿𝑔)) ↔ (𝑁‘{𝑌}) ⊆ ( ‘(𝐿𝑔))))
4637, 41, 453imtr4d 294 . . . . . . . 8 ((𝜑𝑔𝐺) → (𝑋 ∈ ( ‘(𝐿𝑔)) → 𝑌 ∈ ( ‘(𝐿𝑔))))
4746imp 406 . . . . . . 7 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑌 ∈ ( ‘(𝐿𝑔)))
48 lcfrlem6.p . . . . . . . 8 + = (+g𝑈)
4948, 26lssvacl 20864 . . . . . . 7 (((𝑈 ∈ LMod ∧ ( ‘(𝐿𝑔)) ∈ (LSubSp‘𝑈)) ∧ (𝑋 ∈ ( ‘(𝐿𝑔)) ∧ 𝑌 ∈ ( ‘(𝐿𝑔)))) → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5011, 30, 31, 47, 49syl22anc 838 . . . . . 6 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5150ex 412 . . . . 5 ((𝜑𝑔𝐺) → (𝑋 ∈ ( ‘(𝐿𝑔)) → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔))))
5251reximdva 3142 . . . 4 (𝜑 → (∃𝑔𝐺 𝑋 ∈ ( ‘(𝐿𝑔)) → ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔))))
535, 52mpd 15 . . 3 (𝜑 → ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
54 eliun 4948 . . 3 ((𝑋 + 𝑌) ∈ 𝑔𝐺 ( ‘(𝐿𝑔)) ↔ ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5553, 54sylibr 234 . 2 (𝜑 → (𝑋 + 𝑌) ∈ 𝑔𝐺 ( ‘(𝐿𝑔)))
5655, 2eleqtrrdi 2839 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  wss 3905  {csn 4579   ciun 4944  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  LModclmod 20781  LSubSpclss 20852  LSpanclspn 20892  LFnlclfn 39035  LKerclk 39063  LDualcld 39101  HLchlt 39328  LHypclh 39963  DVecHcdvh 41057  ocHcoch 41326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-riotaBAD 38931
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-undef 8213  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-0g 17363  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cntz 19214  df-lsm 19533  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lvec 21025  df-lfl 39036  df-lkr 39064  df-ldual 39102  df-oposet 39154  df-ol 39156  df-oml 39157  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-llines 39477  df-lplanes 39478  df-lvols 39479  df-lines 39480  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967  df-laut 39968  df-ldil 40083  df-ltrn 40084  df-trl 40138  df-tendo 40734  df-edring 40736  df-disoa 41008  df-dvech 41058  df-dib 41118  df-dic 41152  df-dih 41208  df-doch 41327
This theorem is referenced by:  lcfrlem41  41562
  Copyright terms: Public domain W3C validator