Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem6 Structured version   Visualization version   GIF version

Theorem lcfrlem6 40010
Description: Lemma for lcfr 40048. Closure of vector sum with colinear vectors. TODO: Move down 𝑁 definition so top hypotheses can be shared. (Contributed by NM, 10-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem6.h 𝐻 = (LHyp‘𝐾)
lcfrlem6.o = ((ocH‘𝐾)‘𝑊)
lcfrlem6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem6.p + = (+g𝑈)
lcfrlem6.n 𝑁 = (LSpan‘𝑈)
lcfrlem6.l 𝐿 = (LKer‘𝑈)
lcfrlem6.d 𝐷 = (LDual‘𝑈)
lcfrlem6.q 𝑄 = (LSubSp‘𝐷)
lcfrlem6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem6.g (𝜑𝐺𝑄)
lcfrlem6.e 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem6.x (𝜑𝑋𝐸)
lcfrlem6.y (𝜑𝑌𝐸)
lcfrlem6.en (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
Assertion
Ref Expression
lcfrlem6 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Distinct variable groups:   + ,𝑔   𝑈,𝑔   𝑔,𝑋   𝑔,𝑌   𝜑,𝑔
Allowed substitution hints:   𝐷(𝑔)   𝑄(𝑔)   𝐸(𝑔)   𝐺(𝑔)   𝐻(𝑔)   𝐾(𝑔)   𝐿(𝑔)   𝑁(𝑔)   (𝑔)   𝑊(𝑔)

Proof of Theorem lcfrlem6
StepHypRef Expression
1 lcfrlem6.x . . . . . 6 (𝜑𝑋𝐸)
2 lcfrlem6.e . . . . . 6 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
31, 2eleqtrdi 2848 . . . . 5 (𝜑𝑋 𝑔𝐺 ( ‘(𝐿𝑔)))
4 eliun 4958 . . . . 5 (𝑋 𝑔𝐺 ( ‘(𝐿𝑔)) ↔ ∃𝑔𝐺 𝑋 ∈ ( ‘(𝐿𝑔)))
53, 4sylib 217 . . . 4 (𝜑 → ∃𝑔𝐺 𝑋 ∈ ( ‘(𝐿𝑔)))
6 lcfrlem6.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
7 lcfrlem6.u . . . . . . . . . 10 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 lcfrlem6.k . . . . . . . . . 10 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
96, 7, 8dvhlmod 39573 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
109adantr 481 . . . . . . . 8 ((𝜑𝑔𝐺) → 𝑈 ∈ LMod)
1110adantr 481 . . . . . . 7 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑈 ∈ LMod)
128adantr 481 . . . . . . . . 9 ((𝜑𝑔𝐺) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 eqid 2736 . . . . . . . . . 10 (Base‘𝑈) = (Base‘𝑈)
14 eqid 2736 . . . . . . . . . 10 (LFnl‘𝑈) = (LFnl‘𝑈)
15 lcfrlem6.l . . . . . . . . . 10 𝐿 = (LKer‘𝑈)
16 lcfrlem6.g . . . . . . . . . . . 12 (𝜑𝐺𝑄)
17 eqid 2736 . . . . . . . . . . . . 13 (Base‘𝐷) = (Base‘𝐷)
18 lcfrlem6.q . . . . . . . . . . . . 13 𝑄 = (LSubSp‘𝐷)
1917, 18lssel 20398 . . . . . . . . . . . 12 ((𝐺𝑄𝑔𝐺) → 𝑔 ∈ (Base‘𝐷))
2016, 19sylan 580 . . . . . . . . . . 11 ((𝜑𝑔𝐺) → 𝑔 ∈ (Base‘𝐷))
21 lcfrlem6.d . . . . . . . . . . . . 13 𝐷 = (LDual‘𝑈)
2214, 21, 17, 9ldualvbase 37588 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐷) = (LFnl‘𝑈))
2322adantr 481 . . . . . . . . . . 11 ((𝜑𝑔𝐺) → (Base‘𝐷) = (LFnl‘𝑈))
2420, 23eleqtrd 2840 . . . . . . . . . 10 ((𝜑𝑔𝐺) → 𝑔 ∈ (LFnl‘𝑈))
2513, 14, 15, 10, 24lkrssv 37558 . . . . . . . . 9 ((𝜑𝑔𝐺) → (𝐿𝑔) ⊆ (Base‘𝑈))
26 eqid 2736 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
27 lcfrlem6.o . . . . . . . . . 10 = ((ocH‘𝐾)‘𝑊)
286, 7, 13, 26, 27dochlss 39817 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿𝑔) ⊆ (Base‘𝑈)) → ( ‘(𝐿𝑔)) ∈ (LSubSp‘𝑈))
2912, 25, 28syl2anc 584 . . . . . . . 8 ((𝜑𝑔𝐺) → ( ‘(𝐿𝑔)) ∈ (LSubSp‘𝑈))
3029adantr 481 . . . . . . 7 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → ( ‘(𝐿𝑔)) ∈ (LSubSp‘𝑈))
31 simpr 485 . . . . . . 7 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑋 ∈ ( ‘(𝐿𝑔)))
32 lcfrlem6.en . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
3332adantr 481 . . . . . . . . . . . 12 ((𝜑𝑔𝐺) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
3433adantr 481 . . . . . . . . . . 11 (((𝜑𝑔𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔))) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
35 simpr 485 . . . . . . . . . . 11 (((𝜑𝑔𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔))) → (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔)))
3634, 35eqsstrrd 3983 . . . . . . . . . 10 (((𝜑𝑔𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔))) → (𝑁‘{𝑌}) ⊆ ( ‘(𝐿𝑔)))
3736ex 413 . . . . . . . . 9 ((𝜑𝑔𝐺) → ((𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔)) → (𝑁‘{𝑌}) ⊆ ( ‘(𝐿𝑔))))
38 lcfrlem6.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑈)
396, 27, 7, 13, 15, 21, 18, 2, 8, 16, 1lcfrlem4 40008 . . . . . . . . . . 11 (𝜑𝑋 ∈ (Base‘𝑈))
4039adantr 481 . . . . . . . . . 10 ((𝜑𝑔𝐺) → 𝑋 ∈ (Base‘𝑈))
4113, 26, 38, 10, 29, 40lspsnel5 20456 . . . . . . . . 9 ((𝜑𝑔𝐺) → (𝑋 ∈ ( ‘(𝐿𝑔)) ↔ (𝑁‘{𝑋}) ⊆ ( ‘(𝐿𝑔))))
42 lcfrlem6.y . . . . . . . . . . . 12 (𝜑𝑌𝐸)
436, 27, 7, 13, 15, 21, 18, 2, 8, 16, 42lcfrlem4 40008 . . . . . . . . . . 11 (𝜑𝑌 ∈ (Base‘𝑈))
4443adantr 481 . . . . . . . . . 10 ((𝜑𝑔𝐺) → 𝑌 ∈ (Base‘𝑈))
4513, 26, 38, 10, 29, 44lspsnel5 20456 . . . . . . . . 9 ((𝜑𝑔𝐺) → (𝑌 ∈ ( ‘(𝐿𝑔)) ↔ (𝑁‘{𝑌}) ⊆ ( ‘(𝐿𝑔))))
4637, 41, 453imtr4d 293 . . . . . . . 8 ((𝜑𝑔𝐺) → (𝑋 ∈ ( ‘(𝐿𝑔)) → 𝑌 ∈ ( ‘(𝐿𝑔))))
4746imp 407 . . . . . . 7 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑌 ∈ ( ‘(𝐿𝑔)))
48 lcfrlem6.p . . . . . . . 8 + = (+g𝑈)
4948, 26lssvacl 20415 . . . . . . 7 (((𝑈 ∈ LMod ∧ ( ‘(𝐿𝑔)) ∈ (LSubSp‘𝑈)) ∧ (𝑋 ∈ ( ‘(𝐿𝑔)) ∧ 𝑌 ∈ ( ‘(𝐿𝑔)))) → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5011, 30, 31, 47, 49syl22anc 837 . . . . . 6 (((𝜑𝑔𝐺) ∧ 𝑋 ∈ ( ‘(𝐿𝑔))) → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5150ex 413 . . . . 5 ((𝜑𝑔𝐺) → (𝑋 ∈ ( ‘(𝐿𝑔)) → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔))))
5251reximdva 3165 . . . 4 (𝜑 → (∃𝑔𝐺 𝑋 ∈ ( ‘(𝐿𝑔)) → ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔))))
535, 52mpd 15 . . 3 (𝜑 → ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
54 eliun 4958 . . 3 ((𝑋 + 𝑌) ∈ 𝑔𝐺 ( ‘(𝐿𝑔)) ↔ ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5553, 54sylibr 233 . 2 (𝜑 → (𝑋 + 𝑌) ∈ 𝑔𝐺 ( ‘(𝐿𝑔)))
5655, 2eleqtrrdi 2849 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wrex 3073  wss 3910  {csn 4586   ciun 4954  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  LModclmod 20322  LSubSpclss 20392  LSpanclspn 20432  LFnlclfn 37519  LKerclk 37547  LDualcld 37585  HLchlt 37812  LHypclh 38447  DVecHcdvh 39541  ocHcoch 39810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-riotaBAD 37415
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-undef 8204  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-0g 17323  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lvec 20564  df-lfl 37520  df-lkr 37548  df-ldual 37586  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-lplanes 37962  df-lvols 37963  df-lines 37964  df-psubsp 37966  df-pmap 37967  df-padd 38259  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622  df-tendo 39218  df-edring 39220  df-disoa 39492  df-dvech 39542  df-dib 39602  df-dic 39636  df-dih 39692  df-doch 39811
This theorem is referenced by:  lcfrlem41  40046
  Copyright terms: Public domain W3C validator