Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem35 Structured version   Visualization version   GIF version

Theorem lcfrlem35 41578
Description: Lemma for lcfr 41586. (Contributed by NM, 2-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem17.h 𝐻 = (LHyp‘𝐾)
lcfrlem17.o = ((ocH‘𝐾)‘𝑊)
lcfrlem17.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem17.v 𝑉 = (Base‘𝑈)
lcfrlem17.p + = (+g𝑈)
lcfrlem17.z 0 = (0g𝑈)
lcfrlem17.n 𝑁 = (LSpan‘𝑈)
lcfrlem17.a 𝐴 = (LSAtoms‘𝑈)
lcfrlem17.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem17.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lcfrlem22.b 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
lcfrlem24.t · = ( ·𝑠𝑈)
lcfrlem24.s 𝑆 = (Scalar‘𝑈)
lcfrlem24.q 𝑄 = (0g𝑆)
lcfrlem24.r 𝑅 = (Base‘𝑆)
lcfrlem24.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcfrlem24.ib (𝜑𝐼𝐵)
lcfrlem24.l 𝐿 = (LKer‘𝑈)
lcfrlem25.d 𝐷 = (LDual‘𝑈)
lcfrlem28.jn (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
lcfrlem29.i 𝐹 = (invr𝑆)
lcfrlem30.m = (-g𝐷)
lcfrlem30.c 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
Assertion
Ref Expression
lcfrlem35 (𝜑 → ( ‘{(𝑋 + 𝑌)}) = (𝐿𝐶))
Distinct variable groups:   𝑣,𝑘,𝑤,𝑥,   + ,𝑘,𝑣,𝑤,𝑥   𝑅,𝑘,𝑣,𝑥   𝑆,𝑘   · ,𝑘,𝑣,𝑤,𝑥   𝑣,𝑉,𝑥   𝑘,𝑋,𝑣,𝑤,𝑥   𝑘,𝑌,𝑣,𝑤,𝑥   𝑥, 0
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑘)   𝐴(𝑥,𝑤,𝑣,𝑘)   𝐵(𝑥,𝑤,𝑣,𝑘)   𝐶(𝑥,𝑤,𝑣,𝑘)   𝐷(𝑥,𝑤,𝑣,𝑘)   𝑄(𝑥,𝑤,𝑣,𝑘)   𝑅(𝑤)   𝑆(𝑥,𝑤,𝑣)   𝑈(𝑥,𝑤,𝑣,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑘)   𝐼(𝑥,𝑤,𝑣,𝑘)   𝐽(𝑥,𝑤,𝑣,𝑘)   𝐾(𝑥,𝑤,𝑣,𝑘)   𝐿(𝑥,𝑤,𝑣,𝑘)   (𝑥,𝑤,𝑣,𝑘)   𝑁(𝑥,𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑘)   0 (𝑤,𝑣,𝑘)

Proof of Theorem lcfrlem35
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 lcfrlem17.h . . . 4 𝐻 = (LHyp‘𝐾)
2 lcfrlem17.o . . . 4 = ((ocH‘𝐾)‘𝑊)
3 lcfrlem17.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcfrlem17.v . . . 4 𝑉 = (Base‘𝑈)
5 lcfrlem17.p . . . 4 + = (+g𝑈)
6 lcfrlem17.z . . . 4 0 = (0g𝑈)
7 lcfrlem17.n . . . 4 𝑁 = (LSpan‘𝑈)
8 lcfrlem17.a . . . 4 𝐴 = (LSAtoms‘𝑈)
9 lcfrlem17.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 lcfrlem17.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
11 lcfrlem17.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
12 lcfrlem17.ne . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
13 lcfrlem22.b . . . 4 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
14 eqid 2730 . . . 4 (LSSum‘𝑈) = (LSSum‘𝑈)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14lcfrlem23 41566 . . 3 (𝜑 → (( ‘{𝑋, 𝑌})(LSSum‘𝑈)𝐵) = ( ‘{(𝑋 + 𝑌)}))
16 lcfrlem24.t . . . . . 6 · = ( ·𝑠𝑈)
17 lcfrlem24.s . . . . . 6 𝑆 = (Scalar‘𝑈)
18 lcfrlem24.q . . . . . 6 𝑄 = (0g𝑆)
19 lcfrlem24.r . . . . . 6 𝑅 = (Base‘𝑆)
20 lcfrlem24.j . . . . . 6 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
21 lcfrlem24.ib . . . . . 6 (𝜑𝐼𝐵)
22 lcfrlem24.l . . . . . 6 𝐿 = (LKer‘𝑈)
231, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22lcfrlem24 41567 . . . . 5 (𝜑 → ( ‘{𝑋, 𝑌}) = ((𝐿‘(𝐽𝑋)) ∩ (𝐿‘(𝐽𝑌))))
24 eqid 2730 . . . . . 6 (.r𝑆) = (.r𝑆)
25 lcfrlem29.i . . . . . 6 𝐹 = (invr𝑆)
26 eqid 2730 . . . . . 6 (LFnl‘𝑈) = (LFnl‘𝑈)
27 lcfrlem25.d . . . . . 6 𝐷 = (LDual‘𝑈)
28 eqid 2730 . . . . . 6 ( ·𝑠𝐷) = ( ·𝑠𝐷)
29 lcfrlem30.m . . . . . 6 = (-g𝐷)
301, 3, 9dvhlvec 41110 . . . . . 6 (𝜑𝑈 ∈ LVec)
31 eqid 2730 . . . . . . 7 (0g𝐷) = (0g𝐷)
32 eqid 2730 . . . . . . 7 {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
331, 2, 3, 4, 5, 16, 17, 19, 6, 26, 22, 27, 31, 32, 20, 9, 10lcfrlem10 41553 . . . . . 6 (𝜑 → (𝐽𝑋) ∈ (LFnl‘𝑈))
341, 2, 3, 4, 5, 16, 17, 19, 6, 26, 22, 27, 31, 32, 20, 9, 11lcfrlem10 41553 . . . . . 6 (𝜑 → (𝐽𝑌) ∈ (LFnl‘𝑈))
35 eqid 2730 . . . . . . . 8 (LSubSp‘𝑈) = (LSubSp‘𝑈)
361, 3, 9dvhlmod 41111 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
371, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13lcfrlem22 41565 . . . . . . . 8 (𝜑𝐵𝐴)
3835, 8, 36, 37lsatlssel 38997 . . . . . . 7 (𝜑𝐵 ∈ (LSubSp‘𝑈))
394, 35lssel 20850 . . . . . . 7 ((𝐵 ∈ (LSubSp‘𝑈) ∧ 𝐼𝐵) → 𝐼𝑉)
4038, 21, 39syl2anc 584 . . . . . 6 (𝜑𝐼𝑉)
41 lcfrlem28.jn . . . . . 6 (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
42 lcfrlem30.c . . . . . 6 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
434, 17, 24, 18, 25, 26, 27, 28, 29, 30, 33, 34, 40, 41, 42, 22lcfrlem2 41544 . . . . 5 (𝜑 → ((𝐿‘(𝐽𝑋)) ∩ (𝐿‘(𝐽𝑌))) ⊆ (𝐿𝐶))
4423, 43eqsstrd 3984 . . . 4 (𝜑 → ( ‘{𝑋, 𝑌}) ⊆ (𝐿𝐶))
451, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 27, 41lcfrlem28 41571 . . . . . 6 (𝜑𝐼0 )
466, 7, 8, 30, 37, 21, 45lsatel 39005 . . . . 5 (𝜑𝐵 = (𝑁‘{𝐼}))
471, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 27, 41, 25, 29, 42lcfrlem30 41573 . . . . . . 7 (𝜑𝐶 ∈ (LFnl‘𝑈))
4826, 22, 35lkrlss 39095 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝐶 ∈ (LFnl‘𝑈)) → (𝐿𝐶) ∈ (LSubSp‘𝑈))
4936, 47, 48syl2anc 584 . . . . . 6 (𝜑 → (𝐿𝐶) ∈ (LSubSp‘𝑈))
504, 17, 24, 18, 25, 26, 27, 28, 29, 30, 33, 34, 40, 41, 42, 22lcfrlem3 41545 . . . . . 6 (𝜑𝐼 ∈ (𝐿𝐶))
5135, 7, 36, 49, 50ellspsn5 20909 . . . . 5 (𝜑 → (𝑁‘{𝐼}) ⊆ (𝐿𝐶))
5246, 51eqsstrd 3984 . . . 4 (𝜑𝐵 ⊆ (𝐿𝐶))
5335lsssssubg 20871 . . . . . . 7 (𝑈 ∈ LMod → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
5436, 53syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
5510eldifad 3929 . . . . . . . 8 (𝜑𝑋𝑉)
5611eldifad 3929 . . . . . . . 8 (𝜑𝑌𝑉)
57 prssi 4788 . . . . . . . 8 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} ⊆ 𝑉)
5855, 56, 57syl2anc 584 . . . . . . 7 (𝜑 → {𝑋, 𝑌} ⊆ 𝑉)
591, 3, 4, 35, 2dochlss 41355 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝑋, 𝑌} ⊆ 𝑉) → ( ‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
609, 58, 59syl2anc 584 . . . . . 6 (𝜑 → ( ‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
6154, 60sseldd 3950 . . . . 5 (𝜑 → ( ‘{𝑋, 𝑌}) ∈ (SubGrp‘𝑈))
6254, 38sseldd 3950 . . . . 5 (𝜑𝐵 ∈ (SubGrp‘𝑈))
6354, 49sseldd 3950 . . . . 5 (𝜑 → (𝐿𝐶) ∈ (SubGrp‘𝑈))
6414lsmlub 19601 . . . . 5 ((( ‘{𝑋, 𝑌}) ∈ (SubGrp‘𝑈) ∧ 𝐵 ∈ (SubGrp‘𝑈) ∧ (𝐿𝐶) ∈ (SubGrp‘𝑈)) → ((( ‘{𝑋, 𝑌}) ⊆ (𝐿𝐶) ∧ 𝐵 ⊆ (𝐿𝐶)) ↔ (( ‘{𝑋, 𝑌})(LSSum‘𝑈)𝐵) ⊆ (𝐿𝐶)))
6561, 62, 63, 64syl3anc 1373 . . . 4 (𝜑 → ((( ‘{𝑋, 𝑌}) ⊆ (𝐿𝐶) ∧ 𝐵 ⊆ (𝐿𝐶)) ↔ (( ‘{𝑋, 𝑌})(LSSum‘𝑈)𝐵) ⊆ (𝐿𝐶)))
6644, 52, 65mpbi2and 712 . . 3 (𝜑 → (( ‘{𝑋, 𝑌})(LSSum‘𝑈)𝐵) ⊆ (𝐿𝐶))
6715, 66eqsstrrd 3985 . 2 (𝜑 → ( ‘{(𝑋 + 𝑌)}) ⊆ (𝐿𝐶))
68 eqid 2730 . . 3 (LSHyp‘𝑈) = (LSHyp‘𝑈)
691, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12lcfrlem17 41560 . . . 4 (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 }))
701, 2, 3, 4, 6, 68, 9, 69dochsnshp 41454 . . 3 (𝜑 → ( ‘{(𝑋 + 𝑌)}) ∈ (LSHyp‘𝑈))
711, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 27, 41, 25, 29, 42lcfrlem34 41577 . . . 4 (𝜑𝐶 ≠ (0g𝐷))
7268, 26, 22, 27, 31, 30, 47lduallkr3 39162 . . . 4 (𝜑 → ((𝐿𝐶) ∈ (LSHyp‘𝑈) ↔ 𝐶 ≠ (0g𝐷)))
7371, 72mpbird 257 . . 3 (𝜑 → (𝐿𝐶) ∈ (LSHyp‘𝑈))
7468, 30, 70, 73lshpcmp 38988 . 2 (𝜑 → (( ‘{(𝑋 + 𝑌)}) ⊆ (𝐿𝐶) ↔ ( ‘{(𝑋 + 𝑌)}) = (𝐿𝐶)))
7567, 74mpbid 232 1 (𝜑 → ( ‘{(𝑋 + 𝑌)}) = (𝐿𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wrex 3054  {crab 3408  cdif 3914  cin 3916  wss 3917  {csn 4592  {cpr 4594  cmpt 5191  cfv 6514  crio 7346  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  -gcsg 18874  SubGrpcsubg 19059  LSSumclsm 19571  invrcinvr 20303  LModclmod 20773  LSubSpclss 20844  LSpanclspn 20884  LSAtomsclsa 38974  LSHypclsh 38975  LFnlclfn 39057  LKerclk 39085  LDualcld 39123  HLchlt 39350  LHypclh 39985  DVecHcdvh 41079  ocHcoch 41348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-undef 8255  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-0g 17411  df-mre 17554  df-mrc 17555  df-acs 17557  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cntz 19256  df-oppg 19285  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-nzr 20429  df-rlreg 20610  df-domn 20611  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lvec 21017  df-lsatoms 38976  df-lshyp 38977  df-lcv 39019  df-lfl 39058  df-lkr 39086  df-ldual 39124  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160  df-tgrp 40744  df-tendo 40756  df-edring 40758  df-dveca 41004  df-disoa 41030  df-dvech 41080  df-dib 41140  df-dic 41174  df-dih 41230  df-doch 41349  df-djh 41396
This theorem is referenced by:  lcfrlem36  41579
  Copyright terms: Public domain W3C validator