| Step | Hyp | Ref
| Expression |
| 1 | | lcfrvalsn.q |
. 2
⊢ 𝑄 = ∪ 𝑓 ∈ 𝑅 ( ⊥ ‘(𝐿‘𝑓)) |
| 2 | | eliun 4995 |
. . . 4
⊢ (𝑥 ∈ ∪ 𝑓 ∈ 𝑅 ( ⊥ ‘(𝐿‘𝑓)) ↔ ∃𝑓 ∈ 𝑅 𝑥 ∈ ( ⊥ ‘(𝐿‘𝑓))) |
| 3 | | lcfrvalsn.r |
. . . . . . . 8
⊢ 𝑅 = (𝑁‘{𝐺}) |
| 4 | 3 | eleq2i 2833 |
. . . . . . 7
⊢ (𝑓 ∈ 𝑅 ↔ 𝑓 ∈ (𝑁‘{𝐺})) |
| 5 | | lcfrvalsn.k |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 6 | 5 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑁‘{𝐺})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 7 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(Base‘𝑈) =
(Base‘𝑈) |
| 8 | | lcfrvalsn.f |
. . . . . . . . . . 11
⊢ 𝐹 = (LFnl‘𝑈) |
| 9 | | lcfrvalsn.l |
. . . . . . . . . . 11
⊢ 𝐿 = (LKer‘𝑈) |
| 10 | | lcfrvalsn.h |
. . . . . . . . . . . . 13
⊢ 𝐻 = (LHyp‘𝐾) |
| 11 | | lcfrvalsn.u |
. . . . . . . . . . . . 13
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 12 | 10, 11, 5 | dvhlmod 41112 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ∈ LMod) |
| 13 | 12 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑁‘{𝐺})) → 𝑈 ∈ LMod) |
| 14 | | lcfrvalsn.d |
. . . . . . . . . . . . . . 15
⊢ 𝐷 = (LDual‘𝑈) |
| 15 | 14, 12 | lduallmod 39154 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐷 ∈ LMod) |
| 16 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 17 | | lcfrvalsn.g |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| 18 | 8, 14, 16, 12, 17 | ldualelvbase 39128 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 ∈ (Base‘𝐷)) |
| 19 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(LSubSp‘𝐷) =
(LSubSp‘𝐷) |
| 20 | | lcfrvalsn.n |
. . . . . . . . . . . . . . 15
⊢ 𝑁 = (LSpan‘𝐷) |
| 21 | 16, 19, 20 | lspsncl 20975 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷)) → (𝑁‘{𝐺}) ∈ (LSubSp‘𝐷)) |
| 22 | 15, 18, 21 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁‘{𝐺}) ∈ (LSubSp‘𝐷)) |
| 23 | 16, 19 | lssel 20935 |
. . . . . . . . . . . . 13
⊢ (((𝑁‘{𝐺}) ∈ (LSubSp‘𝐷) ∧ 𝑓 ∈ (𝑁‘{𝐺})) → 𝑓 ∈ (Base‘𝐷)) |
| 24 | 22, 23 | sylan 580 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑁‘{𝐺})) → 𝑓 ∈ (Base‘𝐷)) |
| 25 | 8, 14, 16, 12 | ldualvbase 39127 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (Base‘𝐷) = 𝐹) |
| 26 | 25 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑁‘{𝐺})) → (Base‘𝐷) = 𝐹) |
| 27 | 24, 26 | eleqtrd 2843 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑁‘{𝐺})) → 𝑓 ∈ 𝐹) |
| 28 | 7, 8, 9, 13, 27 | lkrssv 39097 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑁‘{𝐺})) → (𝐿‘𝑓) ⊆ (Base‘𝑈)) |
| 29 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(Scalar‘𝐷) =
(Scalar‘𝐷) |
| 30 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷)) |
| 31 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢ (
·𝑠 ‘𝐷) = ( ·𝑠
‘𝐷) |
| 32 | 29, 30, 16, 31, 20 | ellspsn 21001 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷)) → (𝑓 ∈ (𝑁‘{𝐺}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑓 = (𝑘( ·𝑠
‘𝐷)𝐺))) |
| 33 | 15, 18, 32 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑓 ∈ (𝑁‘{𝐺}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑓 = (𝑘( ·𝑠
‘𝐷)𝐺))) |
| 34 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(Scalar‘𝑈) =
(Scalar‘𝑈) |
| 35 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) |
| 36 | 34, 35, 14, 29, 30, 12 | ldualsbase 39134 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑈))) |
| 37 | 36 | rexeqdv 3327 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑓 = (𝑘( ·𝑠
‘𝐷)𝐺) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑘( ·𝑠
‘𝐷)𝐺))) |
| 38 | 33, 37 | bitrd 279 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑓 ∈ (𝑁‘{𝐺}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑘( ·𝑠
‘𝐷)𝐺))) |
| 39 | 38 | biimpa 476 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑁‘{𝐺})) → ∃𝑘 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑘( ·𝑠
‘𝐷)𝐺)) |
| 40 | 10, 11, 5 | dvhlvec 41111 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑈 ∈ LVec) |
| 41 | 40 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑁‘{𝐺})) → 𝑈 ∈ LVec) |
| 42 | 17 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑁‘{𝐺})) → 𝐺 ∈ 𝐹) |
| 43 | 34, 35, 8, 9, 14, 31, 41, 42, 27 | lkrss2N 39170 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑁‘{𝐺})) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑓) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑘( ·𝑠
‘𝐷)𝐺))) |
| 44 | 39, 43 | mpbird 257 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑁‘{𝐺})) → (𝐿‘𝐺) ⊆ (𝐿‘𝑓)) |
| 45 | | lcfrvalsn.o |
. . . . . . . . . . 11
⊢ ⊥ =
((ocH‘𝐾)‘𝑊) |
| 46 | 10, 11, 7, 45 | dochss 41367 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝑓) ⊆ (Base‘𝑈) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑓)) → ( ⊥ ‘(𝐿‘𝑓)) ⊆ ( ⊥ ‘(𝐿‘𝐺))) |
| 47 | 6, 28, 44, 46 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑁‘{𝐺})) → ( ⊥ ‘(𝐿‘𝑓)) ⊆ ( ⊥ ‘(𝐿‘𝐺))) |
| 48 | 47 | sseld 3982 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑁‘{𝐺})) → (𝑥 ∈ ( ⊥ ‘(𝐿‘𝑓)) → 𝑥 ∈ ( ⊥ ‘(𝐿‘𝐺)))) |
| 49 | 48 | ex 412 |
. . . . . . 7
⊢ (𝜑 → (𝑓 ∈ (𝑁‘{𝐺}) → (𝑥 ∈ ( ⊥ ‘(𝐿‘𝑓)) → 𝑥 ∈ ( ⊥ ‘(𝐿‘𝐺))))) |
| 50 | 4, 49 | biimtrid 242 |
. . . . . 6
⊢ (𝜑 → (𝑓 ∈ 𝑅 → (𝑥 ∈ ( ⊥ ‘(𝐿‘𝑓)) → 𝑥 ∈ ( ⊥ ‘(𝐿‘𝐺))))) |
| 51 | 50 | rexlimdv 3153 |
. . . . 5
⊢ (𝜑 → (∃𝑓 ∈ 𝑅 𝑥 ∈ ( ⊥ ‘(𝐿‘𝑓)) → 𝑥 ∈ ( ⊥ ‘(𝐿‘𝐺)))) |
| 52 | 16, 20 | lspsnid 20991 |
. . . . . . . . 9
⊢ ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷)) → 𝐺 ∈ (𝑁‘{𝐺})) |
| 53 | 15, 18, 52 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ (𝑁‘{𝐺})) |
| 54 | 53, 3 | eleqtrrdi 2852 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ 𝑅) |
| 55 | | 2fveq3 6911 |
. . . . . . . . 9
⊢ (𝑓 = 𝐺 → ( ⊥ ‘(𝐿‘𝑓)) = ( ⊥ ‘(𝐿‘𝐺))) |
| 56 | 55 | eleq2d 2827 |
. . . . . . . 8
⊢ (𝑓 = 𝐺 → (𝑥 ∈ ( ⊥ ‘(𝐿‘𝑓)) ↔ 𝑥 ∈ ( ⊥ ‘(𝐿‘𝐺)))) |
| 57 | 56 | rspcev 3622 |
. . . . . . 7
⊢ ((𝐺 ∈ 𝑅 ∧ 𝑥 ∈ ( ⊥ ‘(𝐿‘𝐺))) → ∃𝑓 ∈ 𝑅 𝑥 ∈ ( ⊥ ‘(𝐿‘𝑓))) |
| 58 | 54, 57 | sylan 580 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ( ⊥ ‘(𝐿‘𝐺))) → ∃𝑓 ∈ 𝑅 𝑥 ∈ ( ⊥ ‘(𝐿‘𝑓))) |
| 59 | 58 | ex 412 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ( ⊥ ‘(𝐿‘𝐺)) → ∃𝑓 ∈ 𝑅 𝑥 ∈ ( ⊥ ‘(𝐿‘𝑓)))) |
| 60 | 51, 59 | impbid 212 |
. . . 4
⊢ (𝜑 → (∃𝑓 ∈ 𝑅 𝑥 ∈ ( ⊥ ‘(𝐿‘𝑓)) ↔ 𝑥 ∈ ( ⊥ ‘(𝐿‘𝐺)))) |
| 61 | 2, 60 | bitrid 283 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ∪
𝑓 ∈ 𝑅 ( ⊥ ‘(𝐿‘𝑓)) ↔ 𝑥 ∈ ( ⊥ ‘(𝐿‘𝐺)))) |
| 62 | 61 | eqrdv 2735 |
. 2
⊢ (𝜑 → ∪ 𝑓 ∈ 𝑅 ( ⊥ ‘(𝐿‘𝑓)) = ( ⊥ ‘(𝐿‘𝐺))) |
| 63 | 1, 62 | eqtrid 2789 |
1
⊢ (𝜑 → 𝑄 = ( ⊥ ‘(𝐿‘𝐺))) |