Step | Hyp | Ref
| Expression |
1 | | lcfrvalsn.q |
. 2
β’ π = βͺ π β π
( β₯ β(πΏβπ)) |
2 | | eliun 4962 |
. . . 4
β’ (π₯ β βͺ π β π
( β₯ β(πΏβπ)) β βπ β π
π₯ β ( β₯ β(πΏβπ))) |
3 | | lcfrvalsn.r |
. . . . . . . 8
β’ π
= (πβ{πΊ}) |
4 | 3 | eleq2i 2826 |
. . . . . . 7
β’ (π β π
β π β (πβ{πΊ})) |
5 | | lcfrvalsn.k |
. . . . . . . . . . 11
β’ (π β (πΎ β HL β§ π β π»)) |
6 | 5 | adantr 482 |
. . . . . . . . . 10
β’ ((π β§ π β (πβ{πΊ})) β (πΎ β HL β§ π β π»)) |
7 | | eqid 2733 |
. . . . . . . . . . 11
β’
(Baseβπ) =
(Baseβπ) |
8 | | lcfrvalsn.f |
. . . . . . . . . . 11
β’ πΉ = (LFnlβπ) |
9 | | lcfrvalsn.l |
. . . . . . . . . . 11
β’ πΏ = (LKerβπ) |
10 | | lcfrvalsn.h |
. . . . . . . . . . . . 13
β’ π» = (LHypβπΎ) |
11 | | lcfrvalsn.u |
. . . . . . . . . . . . 13
β’ π = ((DVecHβπΎ)βπ) |
12 | 10, 11, 5 | dvhlmod 39623 |
. . . . . . . . . . . 12
β’ (π β π β LMod) |
13 | 12 | adantr 482 |
. . . . . . . . . . 11
β’ ((π β§ π β (πβ{πΊ})) β π β LMod) |
14 | | lcfrvalsn.d |
. . . . . . . . . . . . . . 15
β’ π· = (LDualβπ) |
15 | 14, 12 | lduallmod 37665 |
. . . . . . . . . . . . . 14
β’ (π β π· β LMod) |
16 | | eqid 2733 |
. . . . . . . . . . . . . . 15
β’
(Baseβπ·) =
(Baseβπ·) |
17 | | lcfrvalsn.g |
. . . . . . . . . . . . . . 15
β’ (π β πΊ β πΉ) |
18 | 8, 14, 16, 12, 17 | ldualelvbase 37639 |
. . . . . . . . . . . . . 14
β’ (π β πΊ β (Baseβπ·)) |
19 | | eqid 2733 |
. . . . . . . . . . . . . . 15
β’
(LSubSpβπ·) =
(LSubSpβπ·) |
20 | | lcfrvalsn.n |
. . . . . . . . . . . . . . 15
β’ π = (LSpanβπ·) |
21 | 16, 19, 20 | lspsncl 20482 |
. . . . . . . . . . . . . 14
β’ ((π· β LMod β§ πΊ β (Baseβπ·)) β (πβ{πΊ}) β (LSubSpβπ·)) |
22 | 15, 18, 21 | syl2anc 585 |
. . . . . . . . . . . . 13
β’ (π β (πβ{πΊ}) β (LSubSpβπ·)) |
23 | 16, 19 | lssel 20442 |
. . . . . . . . . . . . 13
β’ (((πβ{πΊ}) β (LSubSpβπ·) β§ π β (πβ{πΊ})) β π β (Baseβπ·)) |
24 | 22, 23 | sylan 581 |
. . . . . . . . . . . 12
β’ ((π β§ π β (πβ{πΊ})) β π β (Baseβπ·)) |
25 | 8, 14, 16, 12 | ldualvbase 37638 |
. . . . . . . . . . . . 13
β’ (π β (Baseβπ·) = πΉ) |
26 | 25 | adantr 482 |
. . . . . . . . . . . 12
β’ ((π β§ π β (πβ{πΊ})) β (Baseβπ·) = πΉ) |
27 | 24, 26 | eleqtrd 2836 |
. . . . . . . . . . 11
β’ ((π β§ π β (πβ{πΊ})) β π β πΉ) |
28 | 7, 8, 9, 13, 27 | lkrssv 37608 |
. . . . . . . . . 10
β’ ((π β§ π β (πβ{πΊ})) β (πΏβπ) β (Baseβπ)) |
29 | | eqid 2733 |
. . . . . . . . . . . . . . 15
β’
(Scalarβπ·) =
(Scalarβπ·) |
30 | | eqid 2733 |
. . . . . . . . . . . . . . 15
β’
(Baseβ(Scalarβπ·)) = (Baseβ(Scalarβπ·)) |
31 | | eqid 2733 |
. . . . . . . . . . . . . . 15
β’ (
Β·π βπ·) = ( Β·π
βπ·) |
32 | 29, 30, 16, 31, 20 | lspsnel 20508 |
. . . . . . . . . . . . . 14
β’ ((π· β LMod β§ πΊ β (Baseβπ·)) β (π β (πβ{πΊ}) β βπ β (Baseβ(Scalarβπ·))π = (π( Β·π
βπ·)πΊ))) |
33 | 15, 18, 32 | syl2anc 585 |
. . . . . . . . . . . . 13
β’ (π β (π β (πβ{πΊ}) β βπ β (Baseβ(Scalarβπ·))π = (π( Β·π
βπ·)πΊ))) |
34 | | eqid 2733 |
. . . . . . . . . . . . . . 15
β’
(Scalarβπ) =
(Scalarβπ) |
35 | | eqid 2733 |
. . . . . . . . . . . . . . 15
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
36 | 34, 35, 14, 29, 30, 12 | ldualsbase 37645 |
. . . . . . . . . . . . . 14
β’ (π β
(Baseβ(Scalarβπ·)) = (Baseβ(Scalarβπ))) |
37 | 36 | rexeqdv 3313 |
. . . . . . . . . . . . 13
β’ (π β (βπ β (Baseβ(Scalarβπ·))π = (π( Β·π
βπ·)πΊ) β βπ β (Baseβ(Scalarβπ))π = (π( Β·π
βπ·)πΊ))) |
38 | 33, 37 | bitrd 279 |
. . . . . . . . . . . 12
β’ (π β (π β (πβ{πΊ}) β βπ β (Baseβ(Scalarβπ))π = (π( Β·π
βπ·)πΊ))) |
39 | 38 | biimpa 478 |
. . . . . . . . . . 11
β’ ((π β§ π β (πβ{πΊ})) β βπ β (Baseβ(Scalarβπ))π = (π( Β·π
βπ·)πΊ)) |
40 | 10, 11, 5 | dvhlvec 39622 |
. . . . . . . . . . . . 13
β’ (π β π β LVec) |
41 | 40 | adantr 482 |
. . . . . . . . . . . 12
β’ ((π β§ π β (πβ{πΊ})) β π β LVec) |
42 | 17 | adantr 482 |
. . . . . . . . . . . 12
β’ ((π β§ π β (πβ{πΊ})) β πΊ β πΉ) |
43 | 34, 35, 8, 9, 14, 31, 41, 42, 27 | lkrss2N 37681 |
. . . . . . . . . . 11
β’ ((π β§ π β (πβ{πΊ})) β ((πΏβπΊ) β (πΏβπ) β βπ β (Baseβ(Scalarβπ))π = (π( Β·π
βπ·)πΊ))) |
44 | 39, 43 | mpbird 257 |
. . . . . . . . . 10
β’ ((π β§ π β (πβ{πΊ})) β (πΏβπΊ) β (πΏβπ)) |
45 | | lcfrvalsn.o |
. . . . . . . . . . 11
β’ β₯ =
((ocHβπΎ)βπ) |
46 | 10, 11, 7, 45 | dochss 39878 |
. . . . . . . . . 10
β’ (((πΎ β HL β§ π β π») β§ (πΏβπ) β (Baseβπ) β§ (πΏβπΊ) β (πΏβπ)) β ( β₯ β(πΏβπ)) β ( β₯ β(πΏβπΊ))) |
47 | 6, 28, 44, 46 | syl3anc 1372 |
. . . . . . . . 9
β’ ((π β§ π β (πβ{πΊ})) β ( β₯ β(πΏβπ)) β ( β₯ β(πΏβπΊ))) |
48 | 47 | sseld 3947 |
. . . . . . . 8
β’ ((π β§ π β (πβ{πΊ})) β (π₯ β ( β₯ β(πΏβπ)) β π₯ β ( β₯ β(πΏβπΊ)))) |
49 | 48 | ex 414 |
. . . . . . 7
β’ (π β (π β (πβ{πΊ}) β (π₯ β ( β₯ β(πΏβπ)) β π₯ β ( β₯ β(πΏβπΊ))))) |
50 | 4, 49 | biimtrid 241 |
. . . . . 6
β’ (π β (π β π
β (π₯ β ( β₯ β(πΏβπ)) β π₯ β ( β₯ β(πΏβπΊ))))) |
51 | 50 | rexlimdv 3147 |
. . . . 5
β’ (π β (βπ β π
π₯ β ( β₯ β(πΏβπ)) β π₯ β ( β₯ β(πΏβπΊ)))) |
52 | 16, 20 | lspsnid 20498 |
. . . . . . . . 9
β’ ((π· β LMod β§ πΊ β (Baseβπ·)) β πΊ β (πβ{πΊ})) |
53 | 15, 18, 52 | syl2anc 585 |
. . . . . . . 8
β’ (π β πΊ β (πβ{πΊ})) |
54 | 53, 3 | eleqtrrdi 2845 |
. . . . . . 7
β’ (π β πΊ β π
) |
55 | | 2fveq3 6851 |
. . . . . . . . 9
β’ (π = πΊ β ( β₯ β(πΏβπ)) = ( β₯ β(πΏβπΊ))) |
56 | 55 | eleq2d 2820 |
. . . . . . . 8
β’ (π = πΊ β (π₯ β ( β₯ β(πΏβπ)) β π₯ β ( β₯ β(πΏβπΊ)))) |
57 | 56 | rspcev 3583 |
. . . . . . 7
β’ ((πΊ β π
β§ π₯ β ( β₯ β(πΏβπΊ))) β βπ β π
π₯ β ( β₯ β(πΏβπ))) |
58 | 54, 57 | sylan 581 |
. . . . . 6
β’ ((π β§ π₯ β ( β₯ β(πΏβπΊ))) β βπ β π
π₯ β ( β₯ β(πΏβπ))) |
59 | 58 | ex 414 |
. . . . 5
β’ (π β (π₯ β ( β₯ β(πΏβπΊ)) β βπ β π
π₯ β ( β₯ β(πΏβπ)))) |
60 | 51, 59 | impbid 211 |
. . . 4
β’ (π β (βπ β π
π₯ β ( β₯ β(πΏβπ)) β π₯ β ( β₯ β(πΏβπΊ)))) |
61 | 2, 60 | bitrid 283 |
. . 3
β’ (π β (π₯ β βͺ
π β π
( β₯ β(πΏβπ)) β π₯ β ( β₯ β(πΏβπΊ)))) |
62 | 61 | eqrdv 2731 |
. 2
β’ (π β βͺ π β π
( β₯ β(πΏβπ)) = ( β₯ β(πΏβπΊ))) |
63 | 1, 62 | eqtrid 2785 |
1
β’ (π β π = ( β₯ β(πΏβπΊ))) |