Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem23 | Structured version Visualization version GIF version |
Description: Lemma for mapdpg 39316. Baer p. 45, line 10: "and so y' meets all our requirements." Our ℎ is Baer's y'. (Contributed by NM, 20-Mar-2015.) |
Ref | Expression |
---|---|
mapdpglem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdpglem.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdpglem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdpglem.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdpglem.s | ⊢ − = (-g‘𝑈) |
mapdpglem.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdpglem.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdpglem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdpglem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
mapdpglem.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
mapdpglem1.p | ⊢ ⊕ = (LSSum‘𝐶) |
mapdpglem2.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdpglem3.f | ⊢ 𝐹 = (Base‘𝐶) |
mapdpglem3.te | ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) |
mapdpglem3.a | ⊢ 𝐴 = (Scalar‘𝑈) |
mapdpglem3.b | ⊢ 𝐵 = (Base‘𝐴) |
mapdpglem3.t | ⊢ · = ( ·𝑠 ‘𝐶) |
mapdpglem3.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdpglem3.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
mapdpglem3.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) |
mapdpglem4.q | ⊢ 𝑄 = (0g‘𝑈) |
mapdpglem.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
mapdpglem4.jt | ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) |
mapdpglem4.z | ⊢ 0 = (0g‘𝐴) |
mapdpglem4.g4 | ⊢ (𝜑 → 𝑔 ∈ 𝐵) |
mapdpglem4.z4 | ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) |
mapdpglem4.t4 | ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) |
mapdpglem4.xn | ⊢ (𝜑 → 𝑋 ≠ 𝑄) |
mapdpglem12.yn | ⊢ (𝜑 → 𝑌 ≠ 𝑄) |
mapdpglem17.ep | ⊢ 𝐸 = (((invr‘𝐴)‘𝑔) · 𝑧) |
Ref | Expression |
---|---|
mapdpglem23 | ⊢ (𝜑 → ∃ℎ ∈ 𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpglem.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdpglem.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
3 | mapdpglem.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | eqid 2758 | . . . 4 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
5 | mapdpglem.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
6 | eqid 2758 | . . . 4 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
7 | mapdpglem.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | 1, 3, 7 | dvhlmod 38720 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
9 | mapdpglem.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
10 | mapdpglem.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑈) | |
11 | mapdpglem.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑈) | |
12 | 10, 4, 11 | lspsncl 19830 | . . . . 5 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
13 | 8, 9, 12 | syl2anc 587 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
14 | 1, 2, 3, 4, 5, 6, 7, 13 | mapdcl2 39266 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶)) |
15 | mapdpglem.s | . . . 4 ⊢ − = (-g‘𝑈) | |
16 | mapdpglem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
17 | mapdpglem1.p | . . . 4 ⊢ ⊕ = (LSSum‘𝐶) | |
18 | mapdpglem2.j | . . . 4 ⊢ 𝐽 = (LSpan‘𝐶) | |
19 | mapdpglem3.f | . . . 4 ⊢ 𝐹 = (Base‘𝐶) | |
20 | mapdpglem3.te | . . . 4 ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) | |
21 | mapdpglem3.a | . . . 4 ⊢ 𝐴 = (Scalar‘𝑈) | |
22 | mapdpglem3.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
23 | mapdpglem3.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝐶) | |
24 | mapdpglem3.r | . . . 4 ⊢ 𝑅 = (-g‘𝐶) | |
25 | mapdpglem3.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
26 | mapdpglem3.e | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) | |
27 | mapdpglem4.q | . . . 4 ⊢ 𝑄 = (0g‘𝑈) | |
28 | mapdpglem.ne | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
29 | mapdpglem4.jt | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) | |
30 | mapdpglem4.z | . . . 4 ⊢ 0 = (0g‘𝐴) | |
31 | mapdpglem4.g4 | . . . 4 ⊢ (𝜑 → 𝑔 ∈ 𝐵) | |
32 | mapdpglem4.z4 | . . . 4 ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) | |
33 | mapdpglem4.t4 | . . . 4 ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) | |
34 | mapdpglem4.xn | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 𝑄) | |
35 | mapdpglem12.yn | . . . 4 ⊢ (𝜑 → 𝑌 ≠ 𝑄) | |
36 | mapdpglem17.ep | . . . 4 ⊢ 𝐸 = (((invr‘𝐴)‘𝑔) · 𝑧) | |
37 | 1, 2, 3, 10, 15, 11, 5, 7, 16, 9, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36 | mapdpglem19 39300 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (𝑀‘(𝑁‘{𝑌}))) |
38 | 19, 6 | lssel 19790 | . . 3 ⊢ (((𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶) ∧ 𝐸 ∈ (𝑀‘(𝑁‘{𝑌}))) → 𝐸 ∈ 𝐹) |
39 | 14, 37, 38 | syl2anc 587 | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
40 | 1, 2, 3, 10, 15, 11, 5, 7, 16, 9, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36 | mapdpglem20 39301 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸})) |
41 | 1, 2, 3, 10, 15, 11, 5, 7, 16, 9, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36 | mapdpglem22 39303 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)})) |
42 | sneq 4535 | . . . . . 6 ⊢ (ℎ = 𝐸 → {ℎ} = {𝐸}) | |
43 | 42 | fveq2d 6667 | . . . . 5 ⊢ (ℎ = 𝐸 → (𝐽‘{ℎ}) = (𝐽‘{𝐸})) |
44 | 43 | eqeq2d 2769 | . . . 4 ⊢ (ℎ = 𝐸 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ↔ (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸}))) |
45 | oveq2 7164 | . . . . . . 7 ⊢ (ℎ = 𝐸 → (𝐺𝑅ℎ) = (𝐺𝑅𝐸)) | |
46 | 45 | sneqd 4537 | . . . . . 6 ⊢ (ℎ = 𝐸 → {(𝐺𝑅ℎ)} = {(𝐺𝑅𝐸)}) |
47 | 46 | fveq2d 6667 | . . . . 5 ⊢ (ℎ = 𝐸 → (𝐽‘{(𝐺𝑅ℎ)}) = (𝐽‘{(𝐺𝑅𝐸)})) |
48 | 47 | eqeq2d 2769 | . . . 4 ⊢ (ℎ = 𝐸 → ((𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)}) ↔ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)}))) |
49 | 44, 48 | anbi12d 633 | . . 3 ⊢ (ℎ = 𝐸 → (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)})))) |
50 | 49 | rspcev 3543 | . 2 ⊢ ((𝐸 ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)}))) → ∃ℎ ∈ 𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)}))) |
51 | 39, 40, 41, 50 | syl12anc 835 | 1 ⊢ (𝜑 → ∃ℎ ∈ 𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∃wrex 3071 {csn 4525 ‘cfv 6340 (class class class)co 7156 Basecbs 16554 Scalarcsca 16639 ·𝑠 cvsca 16640 0gc0g 16784 -gcsg 18184 LSSumclsm 18839 invrcinvr 19505 LModclmod 19715 LSubSpclss 19784 LSpanclspn 19824 HLchlt 36960 LHypclh 37594 DVecHcdvh 38688 LCDualclcd 39196 mapdcmpd 39234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-riotaBAD 36563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-tpos 7908 df-undef 7955 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-map 8424 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-n0 11948 df-z 12034 df-uz 12296 df-fz 12953 df-struct 16556 df-ndx 16557 df-slot 16558 df-base 16560 df-sets 16561 df-ress 16562 df-plusg 16649 df-mulr 16650 df-sca 16652 df-vsca 16653 df-0g 16786 df-mre 16928 df-mrc 16929 df-acs 16931 df-proset 17617 df-poset 17635 df-plt 17647 df-lub 17663 df-glb 17664 df-join 17665 df-meet 17666 df-p0 17728 df-p1 17729 df-lat 17735 df-clat 17797 df-mgm 17931 df-sgrp 17980 df-mnd 17991 df-submnd 18036 df-grp 18185 df-minusg 18186 df-sbg 18187 df-subg 18356 df-cntz 18527 df-oppg 18554 df-lsm 18841 df-cmn 18988 df-abl 18989 df-mgp 19321 df-ur 19333 df-ring 19380 df-oppr 19457 df-dvdsr 19475 df-unit 19476 df-invr 19506 df-dvr 19517 df-drng 19585 df-lmod 19717 df-lss 19785 df-lsp 19825 df-lvec 19956 df-lsatoms 36586 df-lshyp 36587 df-lcv 36629 df-lfl 36668 df-lkr 36696 df-ldual 36734 df-oposet 36786 df-ol 36788 df-oml 36789 df-covers 36876 df-ats 36877 df-atl 36908 df-cvlat 36932 df-hlat 36961 df-llines 37108 df-lplanes 37109 df-lvols 37110 df-lines 37111 df-psubsp 37113 df-pmap 37114 df-padd 37406 df-lhyp 37598 df-laut 37599 df-ldil 37714 df-ltrn 37715 df-trl 37769 df-tgrp 38353 df-tendo 38365 df-edring 38367 df-dveca 38613 df-disoa 38639 df-dvech 38689 df-dib 38749 df-dic 38783 df-dih 38839 df-doch 38958 df-djh 39005 df-lcdual 39197 df-mapd 39235 |
This theorem is referenced by: mapdpglem24 39314 |
Copyright terms: Public domain | W3C validator |