Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem23 Structured version   Visualization version   GIF version

Theorem mapdpglem23 38380
Description: Lemma for mapdpg 38392. Baer p. 45, line 10: "and so y' meets all our requirements." Our is Baer's y'. (Contributed by NM, 20-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpglem4.q 𝑄 = (0g𝑈)
mapdpglem.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpglem4.jt (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
mapdpglem4.z 0 = (0g𝐴)
mapdpglem4.g4 (𝜑𝑔𝐵)
mapdpglem4.z4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
mapdpglem4.t4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
mapdpglem4.xn (𝜑𝑋𝑄)
mapdpglem12.yn (𝜑𝑌𝑄)
mapdpglem17.ep 𝐸 = (((invr𝐴)‘𝑔) · 𝑧)
Assertion
Ref Expression
mapdpglem23 (𝜑 → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡   ,𝐸   ,𝐹   ,𝐺   ,𝐽   ,𝑀   ,𝑁   𝑅,   ,   ,𝑋   ,𝑌
Allowed substitution hints:   𝜑(𝑧,𝑡,𝑔,)   𝐴(𝑧,𝑡,𝑔,)   𝐵(𝑧,𝑡,)   𝐶()   (𝑧,𝑡,𝑔,)   𝑄(𝑧,𝑡,𝑔,)   𝑅(𝑡)   · (𝑡,)   𝑈(𝑧,𝑡,𝑔,)   𝐸(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔,)   𝐾(𝑧,𝑡,𝑔,)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔,)   𝑊(𝑧,𝑡,𝑔,)   𝑋(𝑧,𝑔)   0 (𝑧,𝑡,𝑔,)

Proof of Theorem mapdpglem23
StepHypRef Expression
1 mapdpglem.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdpglem.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdpglem.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 eqid 2795 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5 mapdpglem.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
6 eqid 2795 . . . 4 (LSubSp‘𝐶) = (LSubSp‘𝐶)
7 mapdpglem.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
81, 3, 7dvhlmod 37796 . . . . 5 (𝜑𝑈 ∈ LMod)
9 mapdpglem.y . . . . 5 (𝜑𝑌𝑉)
10 mapdpglem.v . . . . . 6 𝑉 = (Base‘𝑈)
11 mapdpglem.n . . . . . 6 𝑁 = (LSpan‘𝑈)
1210, 4, 11lspsncl 19439 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
138, 9, 12syl2anc 584 . . . 4 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
141, 2, 3, 4, 5, 6, 7, 13mapdcl2 38342 . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶))
15 mapdpglem.s . . . 4 = (-g𝑈)
16 mapdpglem.x . . . 4 (𝜑𝑋𝑉)
17 mapdpglem1.p . . . 4 = (LSSum‘𝐶)
18 mapdpglem2.j . . . 4 𝐽 = (LSpan‘𝐶)
19 mapdpglem3.f . . . 4 𝐹 = (Base‘𝐶)
20 mapdpglem3.te . . . 4 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
21 mapdpglem3.a . . . 4 𝐴 = (Scalar‘𝑈)
22 mapdpglem3.b . . . 4 𝐵 = (Base‘𝐴)
23 mapdpglem3.t . . . 4 · = ( ·𝑠𝐶)
24 mapdpglem3.r . . . 4 𝑅 = (-g𝐶)
25 mapdpglem3.g . . . 4 (𝜑𝐺𝐹)
26 mapdpglem3.e . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
27 mapdpglem4.q . . . 4 𝑄 = (0g𝑈)
28 mapdpglem.ne . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
29 mapdpglem4.jt . . . 4 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
30 mapdpglem4.z . . . 4 0 = (0g𝐴)
31 mapdpglem4.g4 . . . 4 (𝜑𝑔𝐵)
32 mapdpglem4.z4 . . . 4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
33 mapdpglem4.t4 . . . 4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
34 mapdpglem4.xn . . . 4 (𝜑𝑋𝑄)
35 mapdpglem12.yn . . . 4 (𝜑𝑌𝑄)
36 mapdpglem17.ep . . . 4 𝐸 = (((invr𝐴)‘𝑔) · 𝑧)
371, 2, 3, 10, 15, 11, 5, 7, 16, 9, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36mapdpglem19 38376 . . 3 (𝜑𝐸 ∈ (𝑀‘(𝑁‘{𝑌})))
3819, 6lssel 19399 . . 3 (((𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶) ∧ 𝐸 ∈ (𝑀‘(𝑁‘{𝑌}))) → 𝐸𝐹)
3914, 37, 38syl2anc 584 . 2 (𝜑𝐸𝐹)
401, 2, 3, 10, 15, 11, 5, 7, 16, 9, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36mapdpglem20 38377 . 2 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸}))
411, 2, 3, 10, 15, 11, 5, 7, 16, 9, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36mapdpglem22 38379 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)}))
42 sneq 4482 . . . . . 6 ( = 𝐸 → {} = {𝐸})
4342fveq2d 6542 . . . . 5 ( = 𝐸 → (𝐽‘{}) = (𝐽‘{𝐸}))
4443eqeq2d 2805 . . . 4 ( = 𝐸 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ↔ (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸})))
45 oveq2 7024 . . . . . . 7 ( = 𝐸 → (𝐺𝑅) = (𝐺𝑅𝐸))
4645sneqd 4484 . . . . . 6 ( = 𝐸 → {(𝐺𝑅)} = {(𝐺𝑅𝐸)})
4746fveq2d 6542 . . . . 5 ( = 𝐸 → (𝐽‘{(𝐺𝑅)}) = (𝐽‘{(𝐺𝑅𝐸)}))
4847eqeq2d 2805 . . . 4 ( = 𝐸 → ((𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}) ↔ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)})))
4944, 48anbi12d 630 . . 3 ( = 𝐸 → (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)}))))
5049rspcev 3559 . 2 ((𝐸𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)}))) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
5139, 40, 41, 50syl12anc 833 1 (𝜑 → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wcel 2081  wne 2984  wrex 3106  {csn 4472  cfv 6225  (class class class)co 7016  Basecbs 16312  Scalarcsca 16397   ·𝑠 cvsca 16398  0gc0g 16542  -gcsg 17863  LSSumclsm 18489  invrcinvr 19111  LModclmod 19324  LSubSpclss 19393  LSpanclspn 19433  HLchlt 36036  LHypclh 36670  DVecHcdvh 37764  LCDualclcd 38272  mapdcmpd 38310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-riotaBAD 35639
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-tpos 7743  df-undef 7790  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-n0 11746  df-z 11830  df-uz 12094  df-fz 12743  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-sca 16410  df-vsca 16411  df-0g 16544  df-mre 16686  df-mrc 16687  df-acs 16689  df-proset 17367  df-poset 17385  df-plt 17397  df-lub 17413  df-glb 17414  df-join 17415  df-meet 17416  df-p0 17478  df-p1 17479  df-lat 17485  df-clat 17547  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-grp 17864  df-minusg 17865  df-sbg 17866  df-subg 18030  df-cntz 18188  df-oppg 18215  df-lsm 18491  df-cmn 18635  df-abl 18636  df-mgp 18930  df-ur 18942  df-ring 18989  df-oppr 19063  df-dvdsr 19081  df-unit 19082  df-invr 19112  df-dvr 19123  df-drng 19194  df-lmod 19326  df-lss 19394  df-lsp 19434  df-lvec 19565  df-lsatoms 35662  df-lshyp 35663  df-lcv 35705  df-lfl 35744  df-lkr 35772  df-ldual 35810  df-oposet 35862  df-ol 35864  df-oml 35865  df-covers 35952  df-ats 35953  df-atl 35984  df-cvlat 36008  df-hlat 36037  df-llines 36184  df-lplanes 36185  df-lvols 36186  df-lines 36187  df-psubsp 36189  df-pmap 36190  df-padd 36482  df-lhyp 36674  df-laut 36675  df-ldil 36790  df-ltrn 36791  df-trl 36845  df-tgrp 37429  df-tendo 37441  df-edring 37443  df-dveca 37689  df-disoa 37715  df-dvech 37765  df-dib 37825  df-dic 37859  df-dih 37915  df-doch 38034  df-djh 38081  df-lcdual 38273  df-mapd 38311
This theorem is referenced by:  mapdpglem24  38390
  Copyright terms: Public domain W3C validator