Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem23 Structured version   Visualization version   GIF version

Theorem mapdpglem23 39304
Description: Lemma for mapdpg 39316. Baer p. 45, line 10: "and so y' meets all our requirements." Our is Baer's y'. (Contributed by NM, 20-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpglem4.q 𝑄 = (0g𝑈)
mapdpglem.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpglem4.jt (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
mapdpglem4.z 0 = (0g𝐴)
mapdpglem4.g4 (𝜑𝑔𝐵)
mapdpglem4.z4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
mapdpglem4.t4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
mapdpglem4.xn (𝜑𝑋𝑄)
mapdpglem12.yn (𝜑𝑌𝑄)
mapdpglem17.ep 𝐸 = (((invr𝐴)‘𝑔) · 𝑧)
Assertion
Ref Expression
mapdpglem23 (𝜑 → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡   ,𝐸   ,𝐹   ,𝐺   ,𝐽   ,𝑀   ,𝑁   𝑅,   ,   ,𝑋   ,𝑌
Allowed substitution hints:   𝜑(𝑧,𝑡,𝑔,)   𝐴(𝑧,𝑡,𝑔,)   𝐵(𝑧,𝑡,)   𝐶()   (𝑧,𝑡,𝑔,)   𝑄(𝑧,𝑡,𝑔,)   𝑅(𝑡)   · (𝑡,)   𝑈(𝑧,𝑡,𝑔,)   𝐸(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔,)   𝐾(𝑧,𝑡,𝑔,)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔,)   𝑊(𝑧,𝑡,𝑔,)   𝑋(𝑧,𝑔)   0 (𝑧,𝑡,𝑔,)

Proof of Theorem mapdpglem23
StepHypRef Expression
1 mapdpglem.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdpglem.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdpglem.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 eqid 2758 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5 mapdpglem.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
6 eqid 2758 . . . 4 (LSubSp‘𝐶) = (LSubSp‘𝐶)
7 mapdpglem.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
81, 3, 7dvhlmod 38720 . . . . 5 (𝜑𝑈 ∈ LMod)
9 mapdpglem.y . . . . 5 (𝜑𝑌𝑉)
10 mapdpglem.v . . . . . 6 𝑉 = (Base‘𝑈)
11 mapdpglem.n . . . . . 6 𝑁 = (LSpan‘𝑈)
1210, 4, 11lspsncl 19830 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
138, 9, 12syl2anc 587 . . . 4 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
141, 2, 3, 4, 5, 6, 7, 13mapdcl2 39266 . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶))
15 mapdpglem.s . . . 4 = (-g𝑈)
16 mapdpglem.x . . . 4 (𝜑𝑋𝑉)
17 mapdpglem1.p . . . 4 = (LSSum‘𝐶)
18 mapdpglem2.j . . . 4 𝐽 = (LSpan‘𝐶)
19 mapdpglem3.f . . . 4 𝐹 = (Base‘𝐶)
20 mapdpglem3.te . . . 4 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
21 mapdpglem3.a . . . 4 𝐴 = (Scalar‘𝑈)
22 mapdpglem3.b . . . 4 𝐵 = (Base‘𝐴)
23 mapdpglem3.t . . . 4 · = ( ·𝑠𝐶)
24 mapdpglem3.r . . . 4 𝑅 = (-g𝐶)
25 mapdpglem3.g . . . 4 (𝜑𝐺𝐹)
26 mapdpglem3.e . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
27 mapdpglem4.q . . . 4 𝑄 = (0g𝑈)
28 mapdpglem.ne . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
29 mapdpglem4.jt . . . 4 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
30 mapdpglem4.z . . . 4 0 = (0g𝐴)
31 mapdpglem4.g4 . . . 4 (𝜑𝑔𝐵)
32 mapdpglem4.z4 . . . 4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
33 mapdpglem4.t4 . . . 4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
34 mapdpglem4.xn . . . 4 (𝜑𝑋𝑄)
35 mapdpglem12.yn . . . 4 (𝜑𝑌𝑄)
36 mapdpglem17.ep . . . 4 𝐸 = (((invr𝐴)‘𝑔) · 𝑧)
371, 2, 3, 10, 15, 11, 5, 7, 16, 9, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36mapdpglem19 39300 . . 3 (𝜑𝐸 ∈ (𝑀‘(𝑁‘{𝑌})))
3819, 6lssel 19790 . . 3 (((𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶) ∧ 𝐸 ∈ (𝑀‘(𝑁‘{𝑌}))) → 𝐸𝐹)
3914, 37, 38syl2anc 587 . 2 (𝜑𝐸𝐹)
401, 2, 3, 10, 15, 11, 5, 7, 16, 9, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36mapdpglem20 39301 . 2 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸}))
411, 2, 3, 10, 15, 11, 5, 7, 16, 9, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36mapdpglem22 39303 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)}))
42 sneq 4535 . . . . . 6 ( = 𝐸 → {} = {𝐸})
4342fveq2d 6667 . . . . 5 ( = 𝐸 → (𝐽‘{}) = (𝐽‘{𝐸}))
4443eqeq2d 2769 . . . 4 ( = 𝐸 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ↔ (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸})))
45 oveq2 7164 . . . . . . 7 ( = 𝐸 → (𝐺𝑅) = (𝐺𝑅𝐸))
4645sneqd 4537 . . . . . 6 ( = 𝐸 → {(𝐺𝑅)} = {(𝐺𝑅𝐸)})
4746fveq2d 6667 . . . . 5 ( = 𝐸 → (𝐽‘{(𝐺𝑅)}) = (𝐽‘{(𝐺𝑅𝐸)}))
4847eqeq2d 2769 . . . 4 ( = 𝐸 → ((𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}) ↔ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)})))
4944, 48anbi12d 633 . . 3 ( = 𝐸 → (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)}))))
5049rspcev 3543 . 2 ((𝐸𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)}))) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
5139, 40, 41, 50syl12anc 835 1 (𝜑 → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2951  wrex 3071  {csn 4525  cfv 6340  (class class class)co 7156  Basecbs 16554  Scalarcsca 16639   ·𝑠 cvsca 16640  0gc0g 16784  -gcsg 18184  LSSumclsm 18839  invrcinvr 19505  LModclmod 19715  LSubSpclss 19784  LSpanclspn 19824  HLchlt 36960  LHypclh 37594  DVecHcdvh 38688  LCDualclcd 39196  mapdcmpd 39234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-riotaBAD 36563
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7411  df-om 7586  df-1st 7699  df-2nd 7700  df-tpos 7908  df-undef 7955  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-n0 11948  df-z 12034  df-uz 12296  df-fz 12953  df-struct 16556  df-ndx 16557  df-slot 16558  df-base 16560  df-sets 16561  df-ress 16562  df-plusg 16649  df-mulr 16650  df-sca 16652  df-vsca 16653  df-0g 16786  df-mre 16928  df-mrc 16929  df-acs 16931  df-proset 17617  df-poset 17635  df-plt 17647  df-lub 17663  df-glb 17664  df-join 17665  df-meet 17666  df-p0 17728  df-p1 17729  df-lat 17735  df-clat 17797  df-mgm 17931  df-sgrp 17980  df-mnd 17991  df-submnd 18036  df-grp 18185  df-minusg 18186  df-sbg 18187  df-subg 18356  df-cntz 18527  df-oppg 18554  df-lsm 18841  df-cmn 18988  df-abl 18989  df-mgp 19321  df-ur 19333  df-ring 19380  df-oppr 19457  df-dvdsr 19475  df-unit 19476  df-invr 19506  df-dvr 19517  df-drng 19585  df-lmod 19717  df-lss 19785  df-lsp 19825  df-lvec 19956  df-lsatoms 36586  df-lshyp 36587  df-lcv 36629  df-lfl 36668  df-lkr 36696  df-ldual 36734  df-oposet 36786  df-ol 36788  df-oml 36789  df-covers 36876  df-ats 36877  df-atl 36908  df-cvlat 36932  df-hlat 36961  df-llines 37108  df-lplanes 37109  df-lvols 37110  df-lines 37111  df-psubsp 37113  df-pmap 37114  df-padd 37406  df-lhyp 37598  df-laut 37599  df-ldil 37714  df-ltrn 37715  df-trl 37769  df-tgrp 38353  df-tendo 38365  df-edring 38367  df-dveca 38613  df-disoa 38639  df-dvech 38689  df-dib 38749  df-dic 38783  df-dih 38839  df-doch 38958  df-djh 39005  df-lcdual 39197  df-mapd 39235
This theorem is referenced by:  mapdpglem24  39314
  Copyright terms: Public domain W3C validator