Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem2a Structured version   Visualization version   GIF version

Theorem mapdpglem2a 38846
Description: Lemma for mapdpg 38878. (Contributed by NM, 20-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
Assertion
Ref Expression
mapdpglem2a (𝜑𝑡𝐹)
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌
Allowed substitution hints:   𝜑(𝑡)   (𝑡)   𝑈(𝑡)   𝐹(𝑡)   𝐻(𝑡)   𝐾(𝑡)   𝑉(𝑡)   𝑊(𝑡)

Proof of Theorem mapdpglem2a
StepHypRef Expression
1 mapdpglem.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdpglem.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 mapdpglem.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 38764 . . 3 (𝜑𝐶 ∈ LMod)
5 mapdpglem.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
6 mapdpglem.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 eqid 2820 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
8 eqid 2820 . . . 4 (LSubSp‘𝐶) = (LSubSp‘𝐶)
91, 6, 3dvhlmod 38282 . . . . 5 (𝜑𝑈 ∈ LMod)
10 mapdpglem.x . . . . 5 (𝜑𝑋𝑉)
11 mapdpglem.v . . . . . 6 𝑉 = (Base‘𝑈)
12 mapdpglem.n . . . . . 6 𝑁 = (LSpan‘𝑈)
1311, 7, 12lspsncl 19725 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
149, 10, 13syl2anc 586 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
151, 5, 6, 7, 2, 8, 3, 14mapdcl2 38828 . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑋})) ∈ (LSubSp‘𝐶))
16 mapdpglem.y . . . . 5 (𝜑𝑌𝑉)
1711, 7, 12lspsncl 19725 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
189, 16, 17syl2anc 586 . . . 4 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
191, 5, 6, 7, 2, 8, 3, 18mapdcl2 38828 . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶))
20 mapdpglem1.p . . . 4 = (LSSum‘𝐶)
218, 20lsmcl 19831 . . 3 ((𝐶 ∈ LMod ∧ (𝑀‘(𝑁‘{𝑋})) ∈ (LSubSp‘𝐶) ∧ (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶)) → ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))) ∈ (LSubSp‘𝐶))
224, 15, 19, 21syl3anc 1367 . 2 (𝜑 → ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))) ∈ (LSubSp‘𝐶))
23 mapdpglem3.te . 2 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
24 mapdpglem3.f . . 3 𝐹 = (Base‘𝐶)
2524, 8lssel 19685 . 2 ((((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))) ∈ (LSubSp‘𝐶) ∧ 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌})))) → 𝑡𝐹)
2622, 23, 25syl2anc 586 1 (𝜑𝑡𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {csn 4543  cfv 6331  (class class class)co 7133  Basecbs 16462  -gcsg 18084  LSSumclsm 18738  LModclmod 19610  LSubSpclss 19679  LSpanclspn 19719  HLchlt 36522  LHypclh 37156  DVecHcdvh 38250  LCDualclcd 38758  mapdcmpd 38796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-riotaBAD 36125
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-iin 4898  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-of 7387  df-om 7559  df-1st 7667  df-2nd 7668  df-tpos 7870  df-undef 7917  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-oadd 8084  df-er 8267  df-map 8386  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-2 11679  df-3 11680  df-4 11681  df-5 11682  df-6 11683  df-n0 11877  df-z 11961  df-uz 12223  df-fz 12877  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-sca 16560  df-vsca 16561  df-0g 16694  df-mre 16836  df-mrc 16837  df-acs 16839  df-proset 17517  df-poset 17535  df-plt 17547  df-lub 17563  df-glb 17564  df-join 17565  df-meet 17566  df-p0 17628  df-p1 17629  df-lat 17635  df-clat 17697  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-submnd 17936  df-grp 18085  df-minusg 18086  df-sbg 18087  df-subg 18255  df-cntz 18426  df-oppg 18453  df-lsm 18740  df-cmn 18887  df-abl 18888  df-mgp 19219  df-ur 19231  df-ring 19278  df-oppr 19352  df-dvdsr 19370  df-unit 19371  df-invr 19401  df-dvr 19412  df-drng 19480  df-lmod 19612  df-lss 19680  df-lsp 19720  df-lvec 19851  df-lsatoms 36148  df-lshyp 36149  df-lcv 36191  df-lfl 36230  df-lkr 36258  df-ldual 36296  df-oposet 36348  df-ol 36350  df-oml 36351  df-covers 36438  df-ats 36439  df-atl 36470  df-cvlat 36494  df-hlat 36523  df-llines 36670  df-lplanes 36671  df-lvols 36672  df-lines 36673  df-psubsp 36675  df-pmap 36676  df-padd 36968  df-lhyp 37160  df-laut 37161  df-ldil 37276  df-ltrn 37277  df-trl 37331  df-tgrp 37915  df-tendo 37927  df-edring 37929  df-dveca 38175  df-disoa 38201  df-dvech 38251  df-dib 38311  df-dic 38345  df-dih 38401  df-doch 38520  df-djh 38567  df-lcdual 38759  df-mapd 38797
This theorem is referenced by:  mapdpglem5N  38849  mapdpglem22  38865
  Copyright terms: Public domain W3C validator