Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem2a Structured version   Visualization version   GIF version

Theorem mapdpglem2a 37830
Description: Lemma for mapdpg 37862. (Contributed by NM, 20-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
Assertion
Ref Expression
mapdpglem2a (𝜑𝑡𝐹)
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌
Allowed substitution hints:   𝜑(𝑡)   (𝑡)   𝑈(𝑡)   𝐹(𝑡)   𝐻(𝑡)   𝐾(𝑡)   𝑉(𝑡)   𝑊(𝑡)

Proof of Theorem mapdpglem2a
StepHypRef Expression
1 mapdpglem.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdpglem.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 mapdpglem.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 37748 . . 3 (𝜑𝐶 ∈ LMod)
5 mapdpglem.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
6 mapdpglem.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 eqid 2778 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
8 eqid 2778 . . . 4 (LSubSp‘𝐶) = (LSubSp‘𝐶)
91, 6, 3dvhlmod 37266 . . . . 5 (𝜑𝑈 ∈ LMod)
10 mapdpglem.x . . . . 5 (𝜑𝑋𝑉)
11 mapdpglem.v . . . . . 6 𝑉 = (Base‘𝑈)
12 mapdpglem.n . . . . . 6 𝑁 = (LSpan‘𝑈)
1311, 7, 12lspsncl 19372 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
149, 10, 13syl2anc 579 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
151, 5, 6, 7, 2, 8, 3, 14mapdcl2 37812 . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑋})) ∈ (LSubSp‘𝐶))
16 mapdpglem.y . . . . 5 (𝜑𝑌𝑉)
1711, 7, 12lspsncl 19372 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
189, 16, 17syl2anc 579 . . . 4 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
191, 5, 6, 7, 2, 8, 3, 18mapdcl2 37812 . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶))
20 mapdpglem1.p . . . 4 = (LSSum‘𝐶)
218, 20lsmcl 19478 . . 3 ((𝐶 ∈ LMod ∧ (𝑀‘(𝑁‘{𝑋})) ∈ (LSubSp‘𝐶) ∧ (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶)) → ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))) ∈ (LSubSp‘𝐶))
224, 15, 19, 21syl3anc 1439 . 2 (𝜑 → ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))) ∈ (LSubSp‘𝐶))
23 mapdpglem3.te . 2 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
24 mapdpglem3.f . . 3 𝐹 = (Base‘𝐶)
2524, 8lssel 19330 . 2 ((((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))) ∈ (LSubSp‘𝐶) ∧ 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌})))) → 𝑡𝐹)
2622, 23, 25syl2anc 579 1 (𝜑𝑡𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  {csn 4398  cfv 6135  (class class class)co 6922  Basecbs 16255  -gcsg 17811  LSSumclsm 18433  LModclmod 19255  LSubSpclss 19324  LSpanclspn 19366  HLchlt 35506  LHypclh 36140  DVecHcdvh 37234  LCDualclcd 37742  mapdcmpd 37780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-riotaBAD 35109
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-tpos 7634  df-undef 7681  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-sca 16354  df-vsca 16355  df-0g 16488  df-mre 16632  df-mrc 16633  df-acs 16635  df-proset 17314  df-poset 17332  df-plt 17344  df-lub 17360  df-glb 17361  df-join 17362  df-meet 17363  df-p0 17425  df-p1 17426  df-lat 17432  df-clat 17494  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-grp 17812  df-minusg 17813  df-sbg 17814  df-subg 17975  df-cntz 18133  df-oppg 18159  df-lsm 18435  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-invr 19059  df-dvr 19070  df-drng 19141  df-lmod 19257  df-lss 19325  df-lsp 19367  df-lvec 19498  df-lsatoms 35132  df-lshyp 35133  df-lcv 35175  df-lfl 35214  df-lkr 35242  df-ldual 35280  df-oposet 35332  df-ol 35334  df-oml 35335  df-covers 35422  df-ats 35423  df-atl 35454  df-cvlat 35478  df-hlat 35507  df-llines 35654  df-lplanes 35655  df-lvols 35656  df-lines 35657  df-psubsp 35659  df-pmap 35660  df-padd 35952  df-lhyp 36144  df-laut 36145  df-ldil 36260  df-ltrn 36261  df-trl 36315  df-tgrp 36899  df-tendo 36911  df-edring 36913  df-dveca 37159  df-disoa 37185  df-dvech 37235  df-dib 37295  df-dic 37329  df-dih 37385  df-doch 37504  df-djh 37551  df-lcdual 37743  df-mapd 37781
This theorem is referenced by:  mapdpglem5N  37833  mapdpglem22  37849
  Copyright terms: Public domain W3C validator