MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul2lt0rlt0 Structured version   Visualization version   GIF version

Theorem mul2lt0rlt0 13116
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.)
Hypotheses
Ref Expression
mul2lt0.1 (𝜑𝐴 ∈ ℝ)
mul2lt0.2 (𝜑𝐵 ∈ ℝ)
mul2lt0.3 (𝜑 → (𝐴 · 𝐵) < 0)
Assertion
Ref Expression
mul2lt0rlt0 ((𝜑𝐵 < 0) → 0 < 𝐴)

Proof of Theorem mul2lt0rlt0
StepHypRef Expression
1 mul2lt0.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
2 mul2lt0.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
31, 2remulcld 11270 . . . . 5 (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
43adantr 480 . . . 4 ((𝜑𝐵 < 0) → (𝐴 · 𝐵) ∈ ℝ)
5 0red 11243 . . . 4 ((𝜑𝐵 < 0) → 0 ∈ ℝ)
6 negelrp 13047 . . . . . 6 (𝐵 ∈ ℝ → (-𝐵 ∈ ℝ+𝐵 < 0))
72, 6syl 17 . . . . 5 (𝜑 → (-𝐵 ∈ ℝ+𝐵 < 0))
87biimpar 477 . . . 4 ((𝜑𝐵 < 0) → -𝐵 ∈ ℝ+)
9 mul2lt0.3 . . . . 5 (𝜑 → (𝐴 · 𝐵) < 0)
109adantr 480 . . . 4 ((𝜑𝐵 < 0) → (𝐴 · 𝐵) < 0)
114, 5, 8, 10ltdiv1dd 13113 . . 3 ((𝜑𝐵 < 0) → ((𝐴 · 𝐵) / -𝐵) < (0 / -𝐵))
121recnd 11268 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
1312adantr 480 . . . . . 6 ((𝜑𝐵 < 0) → 𝐴 ∈ ℂ)
142recnd 11268 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
1514adantr 480 . . . . . 6 ((𝜑𝐵 < 0) → 𝐵 ∈ ℂ)
1613, 15mulcld 11260 . . . . 5 ((𝜑𝐵 < 0) → (𝐴 · 𝐵) ∈ ℂ)
17 simpr 484 . . . . . 6 ((𝜑𝐵 < 0) → 𝐵 < 0)
1817lt0ne0d 11807 . . . . 5 ((𝜑𝐵 < 0) → 𝐵 ≠ 0)
1916, 15, 18divneg2d 12036 . . . 4 ((𝜑𝐵 < 0) → -((𝐴 · 𝐵) / 𝐵) = ((𝐴 · 𝐵) / -𝐵))
2013, 15, 18divcan4d 12028 . . . . 5 ((𝜑𝐵 < 0) → ((𝐴 · 𝐵) / 𝐵) = 𝐴)
2120negeqd 11481 . . . 4 ((𝜑𝐵 < 0) → -((𝐴 · 𝐵) / 𝐵) = -𝐴)
2219, 21eqtr3d 2773 . . 3 ((𝜑𝐵 < 0) → ((𝐴 · 𝐵) / -𝐵) = -𝐴)
2315negcld 11586 . . . 4 ((𝜑𝐵 < 0) → -𝐵 ∈ ℂ)
2415, 18negne0d 11597 . . . 4 ((𝜑𝐵 < 0) → -𝐵 ≠ 0)
2523, 24div0d 12021 . . 3 ((𝜑𝐵 < 0) → (0 / -𝐵) = 0)
2611, 22, 253brtr3d 5155 . 2 ((𝜑𝐵 < 0) → -𝐴 < 0)
271adantr 480 . . 3 ((𝜑𝐵 < 0) → 𝐴 ∈ ℝ)
2827lt0neg2d 11812 . 2 ((𝜑𝐵 < 0) → (0 < 𝐴 ↔ -𝐴 < 0))
2926, 28mpbird 257 1 ((𝜑𝐵 < 0) → 0 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5124  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134   · cmul 11139   < clt 11274  -cneg 11472   / cdiv 11899  +crp 13013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-rp 13014
This theorem is referenced by:  mul2lt0llt0  13118  mul2lt0bi  13120  sgnmul  32819  signsply0  34588
  Copyright terms: Public domain W3C validator