Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mul2lt0rlt0 | Structured version Visualization version GIF version |
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.) |
Ref | Expression |
---|---|
mul2lt0.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
mul2lt0.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
mul2lt0.3 | ⊢ (𝜑 → (𝐴 · 𝐵) < 0) |
Ref | Expression |
---|---|
mul2lt0rlt0 | ⊢ ((𝜑 ∧ 𝐵 < 0) → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul2lt0.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | mul2lt0.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 1, 2 | remulcld 11078 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) |
4 | 3 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → (𝐴 · 𝐵) ∈ ℝ) |
5 | 0red 11051 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → 0 ∈ ℝ) | |
6 | negelrp 12836 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → (-𝐵 ∈ ℝ+ ↔ 𝐵 < 0)) | |
7 | 2, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (-𝐵 ∈ ℝ+ ↔ 𝐵 < 0)) |
8 | 7 | biimpar 478 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐵 ∈ ℝ+) |
9 | mul2lt0.3 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝐵) < 0) | |
10 | 9 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → (𝐴 · 𝐵) < 0) |
11 | 4, 5, 8, 10 | ltdiv1dd 12902 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → ((𝐴 · 𝐵) / -𝐵) < (0 / -𝐵)) |
12 | 1 | recnd 11076 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
13 | 12 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐴 ∈ ℂ) |
14 | 2 | recnd 11076 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
15 | 14 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐵 ∈ ℂ) |
16 | 13, 15 | mulcld 11068 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 0) → (𝐴 · 𝐵) ∈ ℂ) |
17 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐵 < 0) | |
18 | 17 | lt0ne0d 11613 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐵 ≠ 0) |
19 | 16, 15, 18 | divneg2d 11838 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -((𝐴 · 𝐵) / 𝐵) = ((𝐴 · 𝐵) / -𝐵)) |
20 | 13, 15, 18 | divcan4d 11830 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 0) → ((𝐴 · 𝐵) / 𝐵) = 𝐴) |
21 | 20 | negeqd 11288 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -((𝐴 · 𝐵) / 𝐵) = -𝐴) |
22 | 19, 21 | eqtr3d 2779 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → ((𝐴 · 𝐵) / -𝐵) = -𝐴) |
23 | 15 | negcld 11392 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐵 ∈ ℂ) |
24 | 15, 18 | negne0d 11403 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐵 ≠ 0) |
25 | 23, 24 | div0d 11823 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → (0 / -𝐵) = 0) |
26 | 11, 22, 25 | 3brtr3d 5118 | . 2 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐴 < 0) |
27 | 1 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐴 ∈ ℝ) |
28 | 27 | lt0neg2d 11618 | . 2 ⊢ ((𝜑 ∧ 𝐵 < 0) → (0 < 𝐴 ↔ -𝐴 < 0)) |
29 | 26, 28 | mpbird 256 | 1 ⊢ ((𝜑 ∧ 𝐵 < 0) → 0 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2105 class class class wbr 5087 (class class class)co 7315 ℂcc 10942 ℝcr 10943 0cc0 10944 · cmul 10949 < clt 11082 -cneg 11279 / cdiv 11705 ℝ+crp 12803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-po 5521 df-so 5522 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-rp 12804 |
This theorem is referenced by: mul2lt0llt0 12907 mul2lt0bi 12909 sgnmul 32615 signsply0 32636 |
Copyright terms: Public domain | W3C validator |