| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul2lt0rlt0 | Structured version Visualization version GIF version | ||
| Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.) |
| Ref | Expression |
|---|---|
| mul2lt0.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| mul2lt0.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| mul2lt0.3 | ⊢ (𝜑 → (𝐴 · 𝐵) < 0) |
| Ref | Expression |
|---|---|
| mul2lt0rlt0 | ⊢ ((𝜑 ∧ 𝐵 < 0) → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul2lt0.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | mul2lt0.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | 1, 2 | remulcld 11164 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → (𝐴 · 𝐵) ∈ ℝ) |
| 5 | 0red 11137 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → 0 ∈ ℝ) | |
| 6 | negelrp 12946 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → (-𝐵 ∈ ℝ+ ↔ 𝐵 < 0)) | |
| 7 | 2, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (-𝐵 ∈ ℝ+ ↔ 𝐵 < 0)) |
| 8 | 7 | biimpar 477 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐵 ∈ ℝ+) |
| 9 | mul2lt0.3 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝐵) < 0) | |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → (𝐴 · 𝐵) < 0) |
| 11 | 4, 5, 8, 10 | ltdiv1dd 13012 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → ((𝐴 · 𝐵) / -𝐵) < (0 / -𝐵)) |
| 12 | 1 | recnd 11162 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐴 ∈ ℂ) |
| 14 | 2 | recnd 11162 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐵 ∈ ℂ) |
| 16 | 13, 15 | mulcld 11154 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 0) → (𝐴 · 𝐵) ∈ ℂ) |
| 17 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐵 < 0) | |
| 18 | 17 | lt0ne0d 11703 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐵 ≠ 0) |
| 19 | 16, 15, 18 | divneg2d 11932 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -((𝐴 · 𝐵) / 𝐵) = ((𝐴 · 𝐵) / -𝐵)) |
| 20 | 13, 15, 18 | divcan4d 11924 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 0) → ((𝐴 · 𝐵) / 𝐵) = 𝐴) |
| 21 | 20 | negeqd 11375 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -((𝐴 · 𝐵) / 𝐵) = -𝐴) |
| 22 | 19, 21 | eqtr3d 2766 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → ((𝐴 · 𝐵) / -𝐵) = -𝐴) |
| 23 | 15 | negcld 11480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐵 ∈ ℂ) |
| 24 | 15, 18 | negne0d 11491 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐵 ≠ 0) |
| 25 | 23, 24 | div0d 11917 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → (0 / -𝐵) = 0) |
| 26 | 11, 22, 25 | 3brtr3d 5126 | . 2 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐴 < 0) |
| 27 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐴 ∈ ℝ) |
| 28 | 27 | lt0neg2d 11708 | . 2 ⊢ ((𝜑 ∧ 𝐵 < 0) → (0 < 𝐴 ↔ -𝐴 < 0)) |
| 29 | 26, 28 | mpbird 257 | 1 ⊢ ((𝜑 ∧ 𝐵 < 0) → 0 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5095 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 · cmul 11033 < clt 11168 -cneg 11366 / cdiv 11795 ℝ+crp 12911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-rp 12912 |
| This theorem is referenced by: mul2lt0llt0 13017 mul2lt0bi 13019 sgnmul 32793 signsply0 34518 |
| Copyright terms: Public domain | W3C validator |