MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul2lt0rlt0 Structured version   Visualization version   GIF version

Theorem mul2lt0rlt0 12761
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.)
Hypotheses
Ref Expression
mul2lt0.1 (𝜑𝐴 ∈ ℝ)
mul2lt0.2 (𝜑𝐵 ∈ ℝ)
mul2lt0.3 (𝜑 → (𝐴 · 𝐵) < 0)
Assertion
Ref Expression
mul2lt0rlt0 ((𝜑𝐵 < 0) → 0 < 𝐴)

Proof of Theorem mul2lt0rlt0
StepHypRef Expression
1 mul2lt0.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
2 mul2lt0.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
31, 2remulcld 10936 . . . . 5 (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
43adantr 480 . . . 4 ((𝜑𝐵 < 0) → (𝐴 · 𝐵) ∈ ℝ)
5 0red 10909 . . . 4 ((𝜑𝐵 < 0) → 0 ∈ ℝ)
6 negelrp 12692 . . . . . 6 (𝐵 ∈ ℝ → (-𝐵 ∈ ℝ+𝐵 < 0))
72, 6syl 17 . . . . 5 (𝜑 → (-𝐵 ∈ ℝ+𝐵 < 0))
87biimpar 477 . . . 4 ((𝜑𝐵 < 0) → -𝐵 ∈ ℝ+)
9 mul2lt0.3 . . . . 5 (𝜑 → (𝐴 · 𝐵) < 0)
109adantr 480 . . . 4 ((𝜑𝐵 < 0) → (𝐴 · 𝐵) < 0)
114, 5, 8, 10ltdiv1dd 12758 . . 3 ((𝜑𝐵 < 0) → ((𝐴 · 𝐵) / -𝐵) < (0 / -𝐵))
121recnd 10934 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
1312adantr 480 . . . . . 6 ((𝜑𝐵 < 0) → 𝐴 ∈ ℂ)
142recnd 10934 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
1514adantr 480 . . . . . 6 ((𝜑𝐵 < 0) → 𝐵 ∈ ℂ)
1613, 15mulcld 10926 . . . . 5 ((𝜑𝐵 < 0) → (𝐴 · 𝐵) ∈ ℂ)
17 simpr 484 . . . . . 6 ((𝜑𝐵 < 0) → 𝐵 < 0)
1817lt0ne0d 11470 . . . . 5 ((𝜑𝐵 < 0) → 𝐵 ≠ 0)
1916, 15, 18divneg2d 11695 . . . 4 ((𝜑𝐵 < 0) → -((𝐴 · 𝐵) / 𝐵) = ((𝐴 · 𝐵) / -𝐵))
2013, 15, 18divcan4d 11687 . . . . 5 ((𝜑𝐵 < 0) → ((𝐴 · 𝐵) / 𝐵) = 𝐴)
2120negeqd 11145 . . . 4 ((𝜑𝐵 < 0) → -((𝐴 · 𝐵) / 𝐵) = -𝐴)
2219, 21eqtr3d 2780 . . 3 ((𝜑𝐵 < 0) → ((𝐴 · 𝐵) / -𝐵) = -𝐴)
2315negcld 11249 . . . 4 ((𝜑𝐵 < 0) → -𝐵 ∈ ℂ)
2415, 18negne0d 11260 . . . 4 ((𝜑𝐵 < 0) → -𝐵 ≠ 0)
2523, 24div0d 11680 . . 3 ((𝜑𝐵 < 0) → (0 / -𝐵) = 0)
2611, 22, 253brtr3d 5101 . 2 ((𝜑𝐵 < 0) → -𝐴 < 0)
271adantr 480 . . 3 ((𝜑𝐵 < 0) → 𝐴 ∈ ℝ)
2827lt0neg2d 11475 . 2 ((𝜑𝐵 < 0) → (0 < 𝐴 ↔ -𝐴 < 0))
2926, 28mpbird 256 1 ((𝜑𝐵 < 0) → 0 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108   class class class wbr 5070  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   · cmul 10807   < clt 10940  -cneg 11136   / cdiv 11562  +crp 12659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-rp 12660
This theorem is referenced by:  mul2lt0llt0  12763  mul2lt0bi  12765  sgnmul  32409  signsply0  32430
  Copyright terms: Public domain W3C validator