| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul2lt0rlt0 | Structured version Visualization version GIF version | ||
| Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.) |
| Ref | Expression |
|---|---|
| mul2lt0.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| mul2lt0.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| mul2lt0.3 | ⊢ (𝜑 → (𝐴 · 𝐵) < 0) |
| Ref | Expression |
|---|---|
| mul2lt0rlt0 | ⊢ ((𝜑 ∧ 𝐵 < 0) → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul2lt0.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | mul2lt0.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | 1, 2 | remulcld 11270 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → (𝐴 · 𝐵) ∈ ℝ) |
| 5 | 0red 11243 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → 0 ∈ ℝ) | |
| 6 | negelrp 13047 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → (-𝐵 ∈ ℝ+ ↔ 𝐵 < 0)) | |
| 7 | 2, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (-𝐵 ∈ ℝ+ ↔ 𝐵 < 0)) |
| 8 | 7 | biimpar 477 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐵 ∈ ℝ+) |
| 9 | mul2lt0.3 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝐵) < 0) | |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → (𝐴 · 𝐵) < 0) |
| 11 | 4, 5, 8, 10 | ltdiv1dd 13113 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → ((𝐴 · 𝐵) / -𝐵) < (0 / -𝐵)) |
| 12 | 1 | recnd 11268 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐴 ∈ ℂ) |
| 14 | 2 | recnd 11268 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐵 ∈ ℂ) |
| 16 | 13, 15 | mulcld 11260 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 0) → (𝐴 · 𝐵) ∈ ℂ) |
| 17 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐵 < 0) | |
| 18 | 17 | lt0ne0d 11807 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐵 ≠ 0) |
| 19 | 16, 15, 18 | divneg2d 12036 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -((𝐴 · 𝐵) / 𝐵) = ((𝐴 · 𝐵) / -𝐵)) |
| 20 | 13, 15, 18 | divcan4d 12028 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 0) → ((𝐴 · 𝐵) / 𝐵) = 𝐴) |
| 21 | 20 | negeqd 11481 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -((𝐴 · 𝐵) / 𝐵) = -𝐴) |
| 22 | 19, 21 | eqtr3d 2773 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → ((𝐴 · 𝐵) / -𝐵) = -𝐴) |
| 23 | 15 | negcld 11586 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐵 ∈ ℂ) |
| 24 | 15, 18 | negne0d 11597 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐵 ≠ 0) |
| 25 | 23, 24 | div0d 12021 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → (0 / -𝐵) = 0) |
| 26 | 11, 22, 25 | 3brtr3d 5155 | . 2 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐴 < 0) |
| 27 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐴 ∈ ℝ) |
| 28 | 27 | lt0neg2d 11812 | . 2 ⊢ ((𝜑 ∧ 𝐵 < 0) → (0 < 𝐴 ↔ -𝐴 < 0)) |
| 29 | 26, 28 | mpbird 257 | 1 ⊢ ((𝜑 ∧ 𝐵 < 0) → 0 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5124 (class class class)co 7410 ℂcc 11132 ℝcr 11133 0cc0 11134 · cmul 11139 < clt 11274 -cneg 11472 / cdiv 11899 ℝ+crp 13013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-rp 13014 |
| This theorem is referenced by: mul2lt0llt0 13118 mul2lt0bi 13120 sgnmul 32819 signsply0 34588 |
| Copyright terms: Public domain | W3C validator |