![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mul2lt0rlt0 | Structured version Visualization version GIF version |
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.) |
Ref | Expression |
---|---|
mul2lt0.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
mul2lt0.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
mul2lt0.3 | ⊢ (𝜑 → (𝐴 · 𝐵) < 0) |
Ref | Expression |
---|---|
mul2lt0rlt0 | ⊢ ((𝜑 ∧ 𝐵 < 0) → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul2lt0.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | mul2lt0.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 1, 2 | remulcld 11294 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) |
4 | 3 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → (𝐴 · 𝐵) ∈ ℝ) |
5 | 0red 11267 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → 0 ∈ ℝ) | |
6 | negelrp 13061 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → (-𝐵 ∈ ℝ+ ↔ 𝐵 < 0)) | |
7 | 2, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (-𝐵 ∈ ℝ+ ↔ 𝐵 < 0)) |
8 | 7 | biimpar 476 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐵 ∈ ℝ+) |
9 | mul2lt0.3 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝐵) < 0) | |
10 | 9 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → (𝐴 · 𝐵) < 0) |
11 | 4, 5, 8, 10 | ltdiv1dd 13127 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → ((𝐴 · 𝐵) / -𝐵) < (0 / -𝐵)) |
12 | 1 | recnd 11292 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
13 | 12 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐴 ∈ ℂ) |
14 | 2 | recnd 11292 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
15 | 14 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐵 ∈ ℂ) |
16 | 13, 15 | mulcld 11284 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 0) → (𝐴 · 𝐵) ∈ ℂ) |
17 | simpr 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐵 < 0) | |
18 | 17 | lt0ne0d 11829 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐵 ≠ 0) |
19 | 16, 15, 18 | divneg2d 12055 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -((𝐴 · 𝐵) / 𝐵) = ((𝐴 · 𝐵) / -𝐵)) |
20 | 13, 15, 18 | divcan4d 12047 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 0) → ((𝐴 · 𝐵) / 𝐵) = 𝐴) |
21 | 20 | negeqd 11504 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -((𝐴 · 𝐵) / 𝐵) = -𝐴) |
22 | 19, 21 | eqtr3d 2768 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → ((𝐴 · 𝐵) / -𝐵) = -𝐴) |
23 | 15 | negcld 11608 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐵 ∈ ℂ) |
24 | 15, 18 | negne0d 11619 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐵 ≠ 0) |
25 | 23, 24 | div0d 12040 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → (0 / -𝐵) = 0) |
26 | 11, 22, 25 | 3brtr3d 5184 | . 2 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐴 < 0) |
27 | 1 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐴 ∈ ℝ) |
28 | 27 | lt0neg2d 11834 | . 2 ⊢ ((𝜑 ∧ 𝐵 < 0) → (0 < 𝐴 ↔ -𝐴 < 0)) |
29 | 26, 28 | mpbird 256 | 1 ⊢ ((𝜑 ∧ 𝐵 < 0) → 0 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2099 class class class wbr 5153 (class class class)co 7424 ℂcc 11156 ℝcr 11157 0cc0 11158 · cmul 11163 < clt 11298 -cneg 11495 / cdiv 11921 ℝ+crp 13028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-rp 13029 |
This theorem is referenced by: mul2lt0llt0 13132 mul2lt0bi 13134 sgnmul 34376 signsply0 34397 |
Copyright terms: Public domain | W3C validator |