Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reclt0d Structured version   Visualization version   GIF version

Theorem reclt0d 45398
Description: The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
reclt0d.1 (𝜑𝐴 ∈ ℝ)
reclt0d.2 (𝜑𝐴 < 0)
Assertion
Ref Expression
reclt0d (𝜑 → (1 / 𝐴) < 0)

Proof of Theorem reclt0d
StepHypRef Expression
1 0lt1 11785 . . 3 0 < 1
21a1i 11 . 2 ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → 0 < 1)
3 simpr 484 . . . 4 ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → ¬ (1 / 𝐴) < 0)
4 0red 11264 . . . . 5 ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → 0 ∈ ℝ)
5 1red 11262 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
6 reclt0d.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
7 reclt0d.2 . . . . . . . 8 (𝜑𝐴 < 0)
87lt0ne0d 11828 . . . . . . 7 (𝜑𝐴 ≠ 0)
95, 6, 8redivcld 12095 . . . . . 6 (𝜑 → (1 / 𝐴) ∈ ℝ)
109adantr 480 . . . . 5 ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → (1 / 𝐴) ∈ ℝ)
114, 10lenltd 11407 . . . 4 ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → (0 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 0))
123, 11mpbird 257 . . 3 ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → 0 ≤ (1 / 𝐴))
136recnd 11289 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1413, 8recidd 12038 . . . . . . 7 (𝜑 → (𝐴 · (1 / 𝐴)) = 1)
1514eqcomd 2743 . . . . . 6 (𝜑 → 1 = (𝐴 · (1 / 𝐴)))
1615adantr 480 . . . . 5 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 1 = (𝐴 · (1 / 𝐴)))
17 0red 11264 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
186, 17, 7ltled 11409 . . . . . . . . 9 (𝜑𝐴 ≤ 0)
1918adantr 480 . . . . . . . 8 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 𝐴 ≤ 0)
20 simpr 484 . . . . . . . 8 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 0 ≤ (1 / 𝐴))
2119, 20jca 511 . . . . . . 7 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → (𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴)))
2221orcd 874 . . . . . 6 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → ((𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴)) ∨ (0 ≤ 𝐴 ∧ (1 / 𝐴) ≤ 0)))
23 mulle0b 12139 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → ((𝐴 · (1 / 𝐴)) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴)) ∨ (0 ≤ 𝐴 ∧ (1 / 𝐴) ≤ 0))))
246, 9, 23syl2anc 584 . . . . . . 7 (𝜑 → ((𝐴 · (1 / 𝐴)) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴)) ∨ (0 ≤ 𝐴 ∧ (1 / 𝐴) ≤ 0))))
2524adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → ((𝐴 · (1 / 𝐴)) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴)) ∨ (0 ≤ 𝐴 ∧ (1 / 𝐴) ≤ 0))))
2622, 25mpbird 257 . . . . 5 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → (𝐴 · (1 / 𝐴)) ≤ 0)
2716, 26eqbrtrd 5165 . . . 4 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 1 ≤ 0)
285adantr 480 . . . . 5 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 1 ∈ ℝ)
29 0red 11264 . . . . 5 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 0 ∈ ℝ)
3028, 29lenltd 11407 . . . 4 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → (1 ≤ 0 ↔ ¬ 0 < 1))
3127, 30mpbid 232 . . 3 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → ¬ 0 < 1)
3212, 31syldan 591 . 2 ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → ¬ 0 < 1)
332, 32condan 818 1 (𝜑 → (1 / 𝐴) < 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108   class class class wbr 5143  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   < clt 11295  cle 11296   / cdiv 11920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921
This theorem is referenced by:  reclt0  45402  ltdiv23neg  45405  pimrecltpos  46723
  Copyright terms: Public domain W3C validator