![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reclt0d | Structured version Visualization version GIF version |
Description: The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
reclt0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
reclt0d.2 | ⊢ (𝜑 → 𝐴 < 0) |
Ref | Expression |
---|---|
reclt0d | ⊢ (𝜑 → (1 / 𝐴) < 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lt1 11788 | . . 3 ⊢ 0 < 1 | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → 0 < 1) |
3 | simpr 483 | . . . 4 ⊢ ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → ¬ (1 / 𝐴) < 0) | |
4 | 0red 11269 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → 0 ∈ ℝ) | |
5 | 1red 11267 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℝ) | |
6 | reclt0d.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
7 | reclt0d.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 < 0) | |
8 | 7 | lt0ne0d 11831 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≠ 0) |
9 | 5, 6, 8 | redivcld 12095 | . . . . . 6 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
10 | 9 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → (1 / 𝐴) ∈ ℝ) |
11 | 4, 10 | lenltd 11412 | . . . 4 ⊢ ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → (0 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 0)) |
12 | 3, 11 | mpbird 256 | . . 3 ⊢ ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → 0 ≤ (1 / 𝐴)) |
13 | 6 | recnd 11294 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
14 | 13, 8 | recidd 12038 | . . . . . . 7 ⊢ (𝜑 → (𝐴 · (1 / 𝐴)) = 1) |
15 | 14 | eqcomd 2732 | . . . . . 6 ⊢ (𝜑 → 1 = (𝐴 · (1 / 𝐴))) |
16 | 15 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 1 = (𝐴 · (1 / 𝐴))) |
17 | 0red 11269 | . . . . . . . . . 10 ⊢ (𝜑 → 0 ∈ ℝ) | |
18 | 6, 17, 7 | ltled 11414 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ≤ 0) |
19 | 18 | adantr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 𝐴 ≤ 0) |
20 | simpr 483 | . . . . . . . 8 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 0 ≤ (1 / 𝐴)) | |
21 | 19, 20 | jca 510 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → (𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴))) |
22 | 21 | orcd 871 | . . . . . 6 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → ((𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴)) ∨ (0 ≤ 𝐴 ∧ (1 / 𝐴) ≤ 0))) |
23 | mulle0b 12139 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → ((𝐴 · (1 / 𝐴)) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴)) ∨ (0 ≤ 𝐴 ∧ (1 / 𝐴) ≤ 0)))) | |
24 | 6, 9, 23 | syl2anc 582 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 · (1 / 𝐴)) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴)) ∨ (0 ≤ 𝐴 ∧ (1 / 𝐴) ≤ 0)))) |
25 | 24 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → ((𝐴 · (1 / 𝐴)) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴)) ∨ (0 ≤ 𝐴 ∧ (1 / 𝐴) ≤ 0)))) |
26 | 22, 25 | mpbird 256 | . . . . 5 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → (𝐴 · (1 / 𝐴)) ≤ 0) |
27 | 16, 26 | eqbrtrd 5177 | . . . 4 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 1 ≤ 0) |
28 | 5 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 1 ∈ ℝ) |
29 | 0red 11269 | . . . . 5 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 0 ∈ ℝ) | |
30 | 28, 29 | lenltd 11412 | . . . 4 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → (1 ≤ 0 ↔ ¬ 0 < 1)) |
31 | 27, 30 | mpbid 231 | . . 3 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → ¬ 0 < 1) |
32 | 12, 31 | syldan 589 | . 2 ⊢ ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → ¬ 0 < 1) |
33 | 2, 32 | condan 816 | 1 ⊢ (𝜑 → (1 / 𝐴) < 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1534 ∈ wcel 2099 class class class wbr 5155 (class class class)co 7426 ℝcr 11159 0cc0 11160 1c1 11161 · cmul 11165 < clt 11300 ≤ cle 11301 / cdiv 11923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-resscn 11217 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-addrcl 11221 ax-mulcl 11222 ax-mulrcl 11223 ax-mulcom 11224 ax-addass 11225 ax-mulass 11226 ax-distr 11227 ax-i2m1 11228 ax-1ne0 11229 ax-1rid 11230 ax-rnegex 11231 ax-rrecex 11232 ax-cnre 11233 ax-pre-lttri 11234 ax-pre-lttrn 11235 ax-pre-ltadd 11236 ax-pre-mulgt0 11237 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-br 5156 df-opab 5218 df-mpt 5239 df-id 5582 df-po 5596 df-so 5597 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-er 8736 df-en 8977 df-dom 8978 df-sdom 8979 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-sub 11498 df-neg 11499 df-div 11924 |
This theorem is referenced by: reclt0 45024 ltdiv23neg 45027 pimrecltpos 46347 |
Copyright terms: Public domain | W3C validator |