Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reclt0d Structured version   Visualization version   GIF version

Theorem reclt0d 45390
Description: The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
reclt0d.1 (𝜑𝐴 ∈ ℝ)
reclt0d.2 (𝜑𝐴 < 0)
Assertion
Ref Expression
reclt0d (𝜑 → (1 / 𝐴) < 0)

Proof of Theorem reclt0d
StepHypRef Expression
1 0lt1 11707 . . 3 0 < 1
21a1i 11 . 2 ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → 0 < 1)
3 simpr 484 . . . 4 ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → ¬ (1 / 𝐴) < 0)
4 0red 11184 . . . . 5 ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → 0 ∈ ℝ)
5 1red 11182 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
6 reclt0d.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
7 reclt0d.2 . . . . . . . 8 (𝜑𝐴 < 0)
87lt0ne0d 11750 . . . . . . 7 (𝜑𝐴 ≠ 0)
95, 6, 8redivcld 12017 . . . . . 6 (𝜑 → (1 / 𝐴) ∈ ℝ)
109adantr 480 . . . . 5 ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → (1 / 𝐴) ∈ ℝ)
114, 10lenltd 11327 . . . 4 ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → (0 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 0))
123, 11mpbird 257 . . 3 ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → 0 ≤ (1 / 𝐴))
136recnd 11209 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1413, 8recidd 11960 . . . . . . 7 (𝜑 → (𝐴 · (1 / 𝐴)) = 1)
1514eqcomd 2736 . . . . . 6 (𝜑 → 1 = (𝐴 · (1 / 𝐴)))
1615adantr 480 . . . . 5 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 1 = (𝐴 · (1 / 𝐴)))
17 0red 11184 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
186, 17, 7ltled 11329 . . . . . . . . 9 (𝜑𝐴 ≤ 0)
1918adantr 480 . . . . . . . 8 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 𝐴 ≤ 0)
20 simpr 484 . . . . . . . 8 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 0 ≤ (1 / 𝐴))
2119, 20jca 511 . . . . . . 7 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → (𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴)))
2221orcd 873 . . . . . 6 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → ((𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴)) ∨ (0 ≤ 𝐴 ∧ (1 / 𝐴) ≤ 0)))
23 mulle0b 12061 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → ((𝐴 · (1 / 𝐴)) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴)) ∨ (0 ≤ 𝐴 ∧ (1 / 𝐴) ≤ 0))))
246, 9, 23syl2anc 584 . . . . . . 7 (𝜑 → ((𝐴 · (1 / 𝐴)) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴)) ∨ (0 ≤ 𝐴 ∧ (1 / 𝐴) ≤ 0))))
2524adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → ((𝐴 · (1 / 𝐴)) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴)) ∨ (0 ≤ 𝐴 ∧ (1 / 𝐴) ≤ 0))))
2622, 25mpbird 257 . . . . 5 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → (𝐴 · (1 / 𝐴)) ≤ 0)
2716, 26eqbrtrd 5132 . . . 4 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 1 ≤ 0)
285adantr 480 . . . . 5 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 1 ∈ ℝ)
29 0red 11184 . . . . 5 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 0 ∈ ℝ)
3028, 29lenltd 11327 . . . 4 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → (1 ≤ 0 ↔ ¬ 0 < 1))
3127, 30mpbid 232 . . 3 ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → ¬ 0 < 1)
3212, 31syldan 591 . 2 ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → ¬ 0 < 1)
332, 32condan 817 1 (𝜑 → (1 / 𝐴) < 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5110  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   · cmul 11080   < clt 11215  cle 11216   / cdiv 11842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843
This theorem is referenced by:  reclt0  45394  ltdiv23neg  45397  pimrecltpos  46713
  Copyright terms: Public domain W3C validator