| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reclt0d | Structured version Visualization version GIF version | ||
| Description: The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| reclt0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| reclt0d.2 | ⊢ (𝜑 → 𝐴 < 0) |
| Ref | Expression |
|---|---|
| reclt0d | ⊢ (𝜑 → (1 / 𝐴) < 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt1 11707 | . . 3 ⊢ 0 < 1 | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → 0 < 1) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → ¬ (1 / 𝐴) < 0) | |
| 4 | 0red 11184 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → 0 ∈ ℝ) | |
| 5 | 1red 11182 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 6 | reclt0d.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 7 | reclt0d.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 < 0) | |
| 8 | 7 | lt0ne0d 11750 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≠ 0) |
| 9 | 5, 6, 8 | redivcld 12017 | . . . . . 6 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → (1 / 𝐴) ∈ ℝ) |
| 11 | 4, 10 | lenltd 11327 | . . . 4 ⊢ ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → (0 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 0)) |
| 12 | 3, 11 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → 0 ≤ (1 / 𝐴)) |
| 13 | 6 | recnd 11209 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 14 | 13, 8 | recidd 11960 | . . . . . . 7 ⊢ (𝜑 → (𝐴 · (1 / 𝐴)) = 1) |
| 15 | 14 | eqcomd 2736 | . . . . . 6 ⊢ (𝜑 → 1 = (𝐴 · (1 / 𝐴))) |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 1 = (𝐴 · (1 / 𝐴))) |
| 17 | 0red 11184 | . . . . . . . . . 10 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 18 | 6, 17, 7 | ltled 11329 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ≤ 0) |
| 19 | 18 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 𝐴 ≤ 0) |
| 20 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 0 ≤ (1 / 𝐴)) | |
| 21 | 19, 20 | jca 511 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → (𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴))) |
| 22 | 21 | orcd 873 | . . . . . 6 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → ((𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴)) ∨ (0 ≤ 𝐴 ∧ (1 / 𝐴) ≤ 0))) |
| 23 | mulle0b 12061 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → ((𝐴 · (1 / 𝐴)) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴)) ∨ (0 ≤ 𝐴 ∧ (1 / 𝐴) ≤ 0)))) | |
| 24 | 6, 9, 23 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 · (1 / 𝐴)) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴)) ∨ (0 ≤ 𝐴 ∧ (1 / 𝐴) ≤ 0)))) |
| 25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → ((𝐴 · (1 / 𝐴)) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴)) ∨ (0 ≤ 𝐴 ∧ (1 / 𝐴) ≤ 0)))) |
| 26 | 22, 25 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → (𝐴 · (1 / 𝐴)) ≤ 0) |
| 27 | 16, 26 | eqbrtrd 5132 | . . . 4 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 1 ≤ 0) |
| 28 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 1 ∈ ℝ) |
| 29 | 0red 11184 | . . . . 5 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 0 ∈ ℝ) | |
| 30 | 28, 29 | lenltd 11327 | . . . 4 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → (1 ≤ 0 ↔ ¬ 0 < 1)) |
| 31 | 27, 30 | mpbid 232 | . . 3 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → ¬ 0 < 1) |
| 32 | 12, 31 | syldan 591 | . 2 ⊢ ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → ¬ 0 < 1) |
| 33 | 2, 32 | condan 817 | 1 ⊢ (𝜑 → (1 / 𝐴) < 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 · cmul 11080 < clt 11215 ≤ cle 11216 / cdiv 11842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 |
| This theorem is referenced by: reclt0 45394 ltdiv23neg 45397 pimrecltpos 46713 |
| Copyright terms: Public domain | W3C validator |