| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reclt0d | Structured version Visualization version GIF version | ||
| Description: The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| reclt0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| reclt0d.2 | ⊢ (𝜑 → 𝐴 < 0) |
| Ref | Expression |
|---|---|
| reclt0d | ⊢ (𝜑 → (1 / 𝐴) < 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt1 11639 | . . 3 ⊢ 0 < 1 | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → 0 < 1) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → ¬ (1 / 𝐴) < 0) | |
| 4 | 0red 11115 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → 0 ∈ ℝ) | |
| 5 | 1red 11113 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 6 | reclt0d.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 7 | reclt0d.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 < 0) | |
| 8 | 7 | lt0ne0d 11682 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≠ 0) |
| 9 | 5, 6, 8 | redivcld 11949 | . . . . . 6 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → (1 / 𝐴) ∈ ℝ) |
| 11 | 4, 10 | lenltd 11259 | . . . 4 ⊢ ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → (0 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 0)) |
| 12 | 3, 11 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → 0 ≤ (1 / 𝐴)) |
| 13 | 6 | recnd 11140 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 14 | 13, 8 | recidd 11892 | . . . . . . 7 ⊢ (𝜑 → (𝐴 · (1 / 𝐴)) = 1) |
| 15 | 14 | eqcomd 2737 | . . . . . 6 ⊢ (𝜑 → 1 = (𝐴 · (1 / 𝐴))) |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 1 = (𝐴 · (1 / 𝐴))) |
| 17 | 0red 11115 | . . . . . . . . . 10 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 18 | 6, 17, 7 | ltled 11261 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ≤ 0) |
| 19 | 18 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 𝐴 ≤ 0) |
| 20 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 0 ≤ (1 / 𝐴)) | |
| 21 | 19, 20 | jca 511 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → (𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴))) |
| 22 | 21 | orcd 873 | . . . . . 6 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → ((𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴)) ∨ (0 ≤ 𝐴 ∧ (1 / 𝐴) ≤ 0))) |
| 23 | mulle0b 11993 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → ((𝐴 · (1 / 𝐴)) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴)) ∨ (0 ≤ 𝐴 ∧ (1 / 𝐴) ≤ 0)))) | |
| 24 | 6, 9, 23 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 · (1 / 𝐴)) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴)) ∨ (0 ≤ 𝐴 ∧ (1 / 𝐴) ≤ 0)))) |
| 25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → ((𝐴 · (1 / 𝐴)) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ (1 / 𝐴)) ∨ (0 ≤ 𝐴 ∧ (1 / 𝐴) ≤ 0)))) |
| 26 | 22, 25 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → (𝐴 · (1 / 𝐴)) ≤ 0) |
| 27 | 16, 26 | eqbrtrd 5111 | . . . 4 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 1 ≤ 0) |
| 28 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 1 ∈ ℝ) |
| 29 | 0red 11115 | . . . . 5 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → 0 ∈ ℝ) | |
| 30 | 28, 29 | lenltd 11259 | . . . 4 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → (1 ≤ 0 ↔ ¬ 0 < 1)) |
| 31 | 27, 30 | mpbid 232 | . . 3 ⊢ ((𝜑 ∧ 0 ≤ (1 / 𝐴)) → ¬ 0 < 1) |
| 32 | 12, 31 | syldan 591 | . 2 ⊢ ((𝜑 ∧ ¬ (1 / 𝐴) < 0) → ¬ 0 < 1) |
| 33 | 2, 32 | condan 817 | 1 ⊢ (𝜑 → (1 / 𝐴) < 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 · cmul 11011 < clt 11146 ≤ cle 11147 / cdiv 11774 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 |
| This theorem is referenced by: reclt0 45488 ltdiv23neg 45491 pimrecltpos 46805 |
| Copyright terms: Public domain | W3C validator |