MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  argimlt0 Structured version   Visualization version   GIF version

Theorem argimlt0 24573
Description: Closure of the argument of a complex number with negative imaginary part. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
argimlt0 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐴)) ∈ (-π(,)0))

Proof of Theorem argimlt0
StepHypRef Expression
1 simpr 471 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (ℑ‘𝐴) < 0)
21lt0ne0d 10793 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (ℑ‘𝐴) ≠ 0)
3 fveq2 6330 . . . . . . 7 (𝐴 = 0 → (ℑ‘𝐴) = (ℑ‘0))
4 im0 14094 . . . . . . 7 (ℑ‘0) = 0
53, 4syl6eq 2821 . . . . . 6 (𝐴 = 0 → (ℑ‘𝐴) = 0)
65necon3i 2975 . . . . 5 ((ℑ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
72, 6syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → 𝐴 ≠ 0)
8 logcl 24529 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
97, 8syldan 579 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (log‘𝐴) ∈ ℂ)
109imcld 14136 . 2 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
11 logcj 24566 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (log‘(∗‘𝐴)) = (∗‘(log‘𝐴)))
122, 11syldan 579 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (log‘(∗‘𝐴)) = (∗‘(log‘𝐴)))
1312fveq2d 6334 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘(∗‘𝐴))) = (ℑ‘(∗‘(log‘𝐴))))
149imcjd 14146 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (ℑ‘(∗‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)))
1513, 14eqtrd 2805 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘(∗‘𝐴))) = -(ℑ‘(log‘𝐴)))
16 cjcl 14046 . . . . . . . 8 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
1716adantr 466 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (∗‘𝐴) ∈ ℂ)
18 imcl 14052 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
1918adantr 466 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (ℑ‘𝐴) ∈ ℝ)
2019lt0neg1d 10797 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → ((ℑ‘𝐴) < 0 ↔ 0 < -(ℑ‘𝐴)))
211, 20mpbid 222 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → 0 < -(ℑ‘𝐴))
22 imcj 14073 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴))
2322adantr 466 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴))
2421, 23breqtrrd 4814 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → 0 < (ℑ‘(∗‘𝐴)))
25 argimgt0 24572 . . . . . . 7 (((∗‘𝐴) ∈ ℂ ∧ 0 < (ℑ‘(∗‘𝐴))) → (ℑ‘(log‘(∗‘𝐴))) ∈ (0(,)π))
2617, 24, 25syl2anc 573 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘(∗‘𝐴))) ∈ (0(,)π))
27 eliooord 12431 . . . . . 6 ((ℑ‘(log‘(∗‘𝐴))) ∈ (0(,)π) → (0 < (ℑ‘(log‘(∗‘𝐴))) ∧ (ℑ‘(log‘(∗‘𝐴))) < π))
2826, 27syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (0 < (ℑ‘(log‘(∗‘𝐴))) ∧ (ℑ‘(log‘(∗‘𝐴))) < π))
2928simprd 483 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘(∗‘𝐴))) < π)
3015, 29eqbrtrrd 4810 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → -(ℑ‘(log‘𝐴)) < π)
31 pire 24424 . . . 4 π ∈ ℝ
32 ltnegcon1 10729 . . . 4 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → (-(ℑ‘(log‘𝐴)) < π ↔ -π < (ℑ‘(log‘𝐴))))
3310, 31, 32sylancl 574 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (-(ℑ‘(log‘𝐴)) < π ↔ -π < (ℑ‘(log‘𝐴))))
3430, 33mpbid 222 . 2 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → -π < (ℑ‘(log‘𝐴)))
3528simpld 482 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → 0 < (ℑ‘(log‘(∗‘𝐴))))
3635, 15breqtrd 4812 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → 0 < -(ℑ‘(log‘𝐴)))
3710lt0neg1d 10797 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → ((ℑ‘(log‘𝐴)) < 0 ↔ 0 < -(ℑ‘(log‘𝐴))))
3836, 37mpbird 247 . 2 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐴)) < 0)
3931renegcli 10542 . . . 4 -π ∈ ℝ
4039rexri 10297 . . 3 -π ∈ ℝ*
41 0xr 10286 . . 3 0 ∈ ℝ*
42 elioo2 12414 . . 3 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*) → ((ℑ‘(log‘𝐴)) ∈ (-π(,)0) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < 0)))
4340, 41, 42mp2an 672 . 2 ((ℑ‘(log‘𝐴)) ∈ (-π(,)0) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < 0))
4410, 34, 38, 43syl3anbrc 1428 1 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐴)) ∈ (-π(,)0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943   class class class wbr 4786  cfv 6029  (class class class)co 6791  cc 10134  cr 10135  0cc0 10136  *cxr 10273   < clt 10274  -cneg 10467  (,)cioo 12373  ccj 14037  cim 14039  πcpi 14996  logclog 24515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214  ax-addf 10215  ax-mulf 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-of 7042  df-om 7211  df-1st 7313  df-2nd 7314  df-supp 7445  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-er 7894  df-map 8009  df-pm 8010  df-ixp 8061  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-fsupp 8430  df-fi 8471  df-sup 8502  df-inf 8503  df-oi 8569  df-card 8963  df-cda 9190  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-9 11286  df-n0 11493  df-z 11578  df-dec 11694  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12144  df-xadd 12145  df-xmul 12146  df-ioo 12377  df-ioc 12378  df-ico 12379  df-icc 12380  df-fz 12527  df-fzo 12667  df-fl 12794  df-mod 12870  df-seq 13002  df-exp 13061  df-fac 13258  df-bc 13287  df-hash 13315  df-shft 14008  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-limsup 14403  df-clim 14420  df-rlim 14421  df-sum 14618  df-ef 14997  df-sin 14999  df-cos 15000  df-pi 15002  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16155  df-mulr 16156  df-starv 16157  df-sca 16158  df-vsca 16159  df-ip 16160  df-tset 16161  df-ple 16162  df-ds 16165  df-unif 16166  df-hom 16167  df-cco 16168  df-rest 16284  df-topn 16285  df-0g 16303  df-gsum 16304  df-topgen 16305  df-pt 16306  df-prds 16309  df-xrs 16363  df-qtop 16368  df-imas 16369  df-xps 16371  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19946  df-xmet 19947  df-met 19948  df-bl 19949  df-mopn 19950  df-fbas 19951  df-fg 19952  df-cnfld 19955  df-top 20912  df-topon 20929  df-topsp 20951  df-bases 20964  df-cld 21037  df-ntr 21038  df-cls 21039  df-nei 21116  df-lp 21154  df-perf 21155  df-cn 21245  df-cnp 21246  df-haus 21333  df-tx 21579  df-hmeo 21772  df-fil 21863  df-fm 21955  df-flim 21956  df-flf 21957  df-xms 22338  df-ms 22339  df-tms 22340  df-cncf 22894  df-limc 23843  df-dv 23844  df-log 24517
This theorem is referenced by:  logcnlem3  24604  atanlogaddlem  24854
  Copyright terms: Public domain W3C validator