Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltsubsubaddltsub Structured version   Visualization version   GIF version

 Description: If the result of subtracting two numbers is greater than a number, the result of adding one of these subtracted numbers to the number is less than the result of subtracting the other subtracted number only. (Contributed by Alexander van der Vekens, 9-Jun-2018.)
Assertion
Ref Expression
ltsubsubaddltsub ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (𝐽 < ((𝐿𝑀) − 𝑁) ↔ (𝐽 + 𝑀) < (𝐿𝑁)))

StepHypRef Expression
1 simpl 486 . . 3 ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 𝐽 ∈ ℝ)
2 resubcl 10935 . . . . . 6 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿𝑀) ∈ ℝ)
323adant3 1129 . . . . 5 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿𝑀) ∈ ℝ)
4 simp3 1135 . . . . 5 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ∈ ℝ)
53, 4resubcld 11053 . . . 4 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐿𝑀) − 𝑁) ∈ ℝ)
65adantl 485 . . 3 ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → ((𝐿𝑀) − 𝑁) ∈ ℝ)
7 simpr2 1192 . . 3 ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 𝑀 ∈ ℝ)
81, 6, 7ltadd1d 11218 . 2 ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (𝐽 < ((𝐿𝑀) − 𝑁) ↔ (𝐽 + 𝑀) < (((𝐿𝑀) − 𝑁) + 𝑀)))
9 recn 10612 . . . . 5 (𝐿 ∈ ℝ → 𝐿 ∈ ℂ)
10 recn 10612 . . . . 5 (𝑀 ∈ ℝ → 𝑀 ∈ ℂ)
11 recn 10612 . . . . 5 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
12 nnpcan 10894 . . . . 5 ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((𝐿𝑀) − 𝑁) + 𝑀) = (𝐿𝑁))
139, 10, 11, 12syl3an 1157 . . . 4 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐿𝑀) − 𝑁) + 𝑀) = (𝐿𝑁))
1413adantl 485 . . 3 ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (((𝐿𝑀) − 𝑁) + 𝑀) = (𝐿𝑁))
1514breq2d 5059 . 2 ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → ((𝐽 + 𝑀) < (((𝐿𝑀) − 𝑁) + 𝑀) ↔ (𝐽 + 𝑀) < (𝐿𝑁)))
168, 15bitrd 282 1 ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (𝐽 < ((𝐿𝑀) − 𝑁) ↔ (𝐽 + 𝑀) < (𝐿𝑁)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   class class class wbr 5047  (class class class)co 7138  ℂcc 10520  ℝcr 10521   + caddc 10525   < clt 10660   − cmin 10855 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-po 5455  df-so 5456  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10662  df-mnf 10663  df-ltxr 10665  df-sub 10857  df-neg 10858 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator