![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltsubsubaddltsub | Structured version Visualization version GIF version |
Description: If the result of subtracting two numbers is greater than a number, the result of adding one of these subtracted numbers to the number is less than the result of subtracting the other subtracted number only. (Contributed by Alexander van der Vekens, 9-Jun-2018.) |
Ref | Expression |
---|---|
ltsubsubaddltsub | ⊢ ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (𝐽 < ((𝐿 − 𝑀) − 𝑁) ↔ (𝐽 + 𝑀) < (𝐿 − 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . 3 ⊢ ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 𝐽 ∈ ℝ) | |
2 | resubcl 11530 | . . . . . 6 ⊢ ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿 − 𝑀) ∈ ℝ) | |
3 | 2 | 3adant3 1130 | . . . . 5 ⊢ ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿 − 𝑀) ∈ ℝ) |
4 | simp3 1136 | . . . . 5 ⊢ ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ∈ ℝ) | |
5 | 3, 4 | resubcld 11648 | . . . 4 ⊢ ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐿 − 𝑀) − 𝑁) ∈ ℝ) |
6 | 5 | adantl 480 | . . 3 ⊢ ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → ((𝐿 − 𝑀) − 𝑁) ∈ ℝ) |
7 | simpr2 1193 | . . 3 ⊢ ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 𝑀 ∈ ℝ) | |
8 | 1, 6, 7 | ltadd1d 11813 | . 2 ⊢ ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (𝐽 < ((𝐿 − 𝑀) − 𝑁) ↔ (𝐽 + 𝑀) < (((𝐿 − 𝑀) − 𝑁) + 𝑀))) |
9 | recn 11204 | . . . . 5 ⊢ (𝐿 ∈ ℝ → 𝐿 ∈ ℂ) | |
10 | recn 11204 | . . . . 5 ⊢ (𝑀 ∈ ℝ → 𝑀 ∈ ℂ) | |
11 | recn 11204 | . . . . 5 ⊢ (𝑁 ∈ ℝ → 𝑁 ∈ ℂ) | |
12 | nnpcan 11489 | . . . . 5 ⊢ ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((𝐿 − 𝑀) − 𝑁) + 𝑀) = (𝐿 − 𝑁)) | |
13 | 9, 10, 11, 12 | syl3an 1158 | . . . 4 ⊢ ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐿 − 𝑀) − 𝑁) + 𝑀) = (𝐿 − 𝑁)) |
14 | 13 | adantl 480 | . . 3 ⊢ ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (((𝐿 − 𝑀) − 𝑁) + 𝑀) = (𝐿 − 𝑁)) |
15 | 14 | breq2d 5161 | . 2 ⊢ ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → ((𝐽 + 𝑀) < (((𝐿 − 𝑀) − 𝑁) + 𝑀) ↔ (𝐽 + 𝑀) < (𝐿 − 𝑁))) |
16 | 8, 15 | bitrd 278 | 1 ⊢ ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (𝐽 < ((𝐿 − 𝑀) − 𝑁) ↔ (𝐽 + 𝑀) < (𝐿 − 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 class class class wbr 5149 (class class class)co 7413 ℂcc 11112 ℝcr 11113 + caddc 11117 < clt 11254 − cmin 11450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-ltxr 11259 df-sub 11452 df-neg 11453 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |