Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resubcl | Structured version Visualization version GIF version |
Description: Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997.) |
Ref | Expression |
---|---|
resubcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 10892 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
2 | recn 10892 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
3 | negsub 11199 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
4 | 1, 2, 3 | syl2an 595 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
5 | renegcl 11214 | . . 3 ⊢ (𝐵 ∈ ℝ → -𝐵 ∈ ℝ) | |
6 | readdcl 10885 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → (𝐴 + -𝐵) ∈ ℝ) | |
7 | 5, 6 | sylan2 592 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + -𝐵) ∈ ℝ) |
8 | 4, 7 | eqeltrrd 2840 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) |
Copyright terms: Public domain | W3C validator |