Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2107
(class class class)co 7409 ℝcr 11109
− cmin 11444 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-sub 11446 df-neg 11447 |
This theorem is referenced by: ltsubadd
11684 lesubadd
11686 lesub1
11708 lesub2
11709 ltsub1
11710 ltsub2
11711 lt2sub
11712 le2sub
11713 ltmul1a
12063 supaddc
12181 cru
12204 qbtwnre
13178 lincmb01cmp
13472 iccf1o
13473 xov1plusxeqvd
13475 intfracq
13824 fldiv
13825 modlt
13845 modsubdir
13905 modsumfzodifsn
13909 serle
14023 expmulnbnd
14198 discr
14203 fzsdom2
14388 cshwidxmod
14753 crre
15061 remullem
15075 01sqrexlem7
15195 absrdbnd
15288 fzomaxdiflem
15289 caubnd2
15304 amgm2
15316 icodiamlt
15382 bhmafibid1
15412 mulcn2
15540 reccn2
15541 rlimo1
15561 climle
15584 climsqz
15585 climsqz2
15586 rlimle
15594 isercolllem1
15611 climsup
15616 caucvgrlem
15619 caucvgrlem2
15621 iseraltlem2
15629 iseraltlem3
15630 iseralt
15631 fsumle
15745 cvgcmp
15762 cvgcmpce
15764 bpoly4
16003 eflt
16060 resinhcl
16099 tanhlt1
16103 sin01bnd
16128 sin01gt0
16133 moddvds
16208 bitscmp
16379 bitsinv1lem
16382 smueqlem
16431 modprm0
16738 pcbc
16833 4sqlem15
16892 blss2ps
23909 blss2
23910 blssps
23930 blss
23931 nm2dif
24134 nlmvscnlem2
24202 nrginvrcnlem
24208 iccntr
24337 icccmplem2
24339 metdstri
24367 cnllycmp
24472 evth
24475 lebnumii
24482 ipcnlem2
24761 cncmet
24839 rrxds
24910 rrxmval
24922 rrxmet
24925 rrxdstprj1
24926 rrxdsfi
24928 ehl1eudis
24937 ehl2eudis
24939 minveclem3b
24945 minveclem4
24949 ivthlem2
24969 ivthlem3
24970 ovollb2lem
25005 ovoliunlem1
25019 ovolscalem1
25030 ovolicc1
25033 ovolicc2lem4
25037 ovolicc2
25039 ovolicc
25040 voliunlem2
25068 ovolioo
25085 ioorcl2
25089 uniioovol
25096 uniioombllem2
25100 uniioombllem3a
25101 uniioombllem3
25102 uniioombllem4
25103 uniioombllem6
25105 opnmbllem
25118 volcn
25123 vitalilem2
25126 ismbf3d
25171 mbfaddlem
25177 i1fadd
25212 itg1addlem4
25216 itg1addlem4OLD
25217 mbfi1fseqlem6
25238 itg2seq
25260 itg2split
25267 itg2cnlem2
25280 itg2cn
25281 itgrevallem1
25312 dvcjbr
25466 dvferm1lem
25501 dvferm2lem
25503 cmvth
25508 mvth
25509 dvlip
25510 dvlip2
25512 c1liplem1
25513 dvgt0
25521 dvlt0
25522 dvge0
25523 dvle
25524 dvivthlem1
25525 lhop1lem
25530 lhop
25533 dvcnvrelem1
25534 dvcnvrelem2
25535 dvcnvre
25536 dvcvx
25537 dvfsumle
25538 dvfsumge
25539 dvfsumrlimf
25542 dvfsumlem2
25544 dvfsumlem3
25545 dvfsumlem4
25546 dvfsum2
25551 ftc1a
25554 ftc1lem4
25556 coe1mul3
25617 ply1divex
25654 plydivex
25810 aalioulem2
25846 aalioulem3
25847 aalioulem4
25848 aalioulem5
25849 aalioulem6
25850 aaliou3lem7
25862 taylthlem2
25886 mtest
25916 pilem2
25964 tangtx
26015 cosordlem
26039 efif1olem2
26052 logcnlem3
26152 logcnlem4
26153 isosctrlem2
26324 chordthmlem2
26338 chordthmlem4
26340 heron
26343 atanlogsublem
26420 atantan
26428 birthdaylem3
26458 logdifbnd
26498 emcllem1
26500 emcllem2
26501 emcllem5
26504 emcllem6
26505 harmonicbnd4
26515 fsumharmonic
26516 lgamgulmlem2
26534 lgamgulmlem3
26535 lgamucov
26542 relgamcl
26566 ftalem2
26578 ftalem5
26581 chpub
26723 logfaclbnd
26725 logfacbnd3
26726 logexprlim
26728 bposlem1
26787 bposlem9
26795 gausslemma2dlem1a
26868 lgseisenlem1
26878 lgsquadlem1
26883 2sqmod
26939 chtppilimlem1
26976 vmadivsum
26985 vmadivsumb
26986 rplogsumlem1
26987 rplogsumlem2
26988 rpvmasumlem
26990 dchrisumlem2
26993 dchrisum0re
27016 rplogsum
27030 mulogsumlem
27034 mulog2sumlem1
27037 vmalogdivsum2
27041 vmalogdivsum
27042 2vmadivsumlem
27043 log2sumbnd
27047 selbergb
27052 selberg2lem
27053 selberg2b
27055 chpdifbndlem1
27056 selberg3lem1
27060 selberg3lem2
27061 selberg3
27062 selberg4lem1
27063 selberg4
27064 pntrf
27066 pntrmax
27067 pntrsumo1
27068 selberg3r
27072 selberg4r
27073 selberg34r
27074 pntrlog2bndlem1
27080 pntrlog2bndlem2
27081 pntrlog2bndlem3
27082 pntrlog2bndlem4
27083 pntrlog2bndlem5
27084 pntrlog2bndlem6
27086 pntrlog2bnd
27087 pntpbnd1a
27088 pntpbnd2
27090 pntibndlem2
27094 pntlemg
27101 pntlemn
27103 pntlemj
27106 pntlemf
27108 pntlemo
27110 pntlem3
27112 pntleml
27114 ttgcontlem1
28142 eqeelen
28162 brbtwn2
28163 colinearalg
28168 axcgrid
28174 axsegconlem1
28175 axsegconlem3
28177 axsegconlem8
28182 axsegconlem9
28183 axsegconlem10
28184 ax5seglem3a
28188 ax5seg
28196 axpaschlem
28198 axcontlem8
28229 nbusgrvtxm1
28636 crctcshwlkn0lem3
29066 crctcshwlkn0lem5
29068 crctcsh
29078 clwlkclwwlklem2fv2
29249 clwlkclwwlklem2a4
29250 clwlkclwwlklem2a
29251 nvabs
29925 dipcj
29967 minvecolem4
30133 lt2addrd
31964 xlt2addrd
31971 fzsplit3
32005 bcm1n
32006 ply1degltel
32666 ply1degltlss
32667 submateqlem1
32787 cnre2csqlem
32890 tpr2rico
32892 dya2ub
33269 dya2icoseg
33276 ballotlemfcc
33492 ballotlemfrcn0
33528 sgnsub
33543 signslema
33573 ftc2re
33610 subfacval3
34180 gg-cmvth
35181 gg-dvfsumle
35182 gg-dvfsumlem2
35183 dnibndlem8
35361 dnibndlem10
35363 dnibndlem11
35364 dnibndlem12
35365 dnicn
35368 knoppcnlem4
35372 unblimceq0
35383 unbdqndv2lem2
35386 knoppndvlem11
35398 knoppndvlem14
35401 knoppndvlem15
35402 knoppndvlem17
35404 knoppndvlem20
35407 irrdifflemf
36206 poimirlem29
36517 broucube
36522 opnmbllem0
36524 mblfinlem3
36527 mblfinlem4
36528 itg2addnclem
36539 itg2addnclem3
36541 itg2gt0cn
36543 ftc1cnnclem
36559 areacirclem1
36576 areacirclem2
36577 areacirclem4
36579 areacirclem5
36580 areacirc
36581 cntotbnd
36664 rrnmet
36697 rrndstprj1
36698 rrndstprj2
36699 lcmineqlem23
40916 intlewftc
40926 aks4d1p1p2
40935 aks4d1p1p4
40936 dvle2
40937 aks4d1p1
40941 sticksstones10
40971 sticksstones12a
40973 sticksstones12
40974 metakunt1
40985 metakunt7
40991 metakunt16
41000 metakunt18
41002 metakunt28
41012 metakunt29
41013 metakunt30
41014 frlmvscadiccat
41080 fltnlta
41405 3cubeslem2
41423 3cubeslem4
41427 irrapxlem2
41561 irrapxlem3
41562 irrapxlem4
41563 irrapxlem5
41564 pellexlem2
41568 pellexlem6
41572 pell1qrgaplem
41611 rmspecsqrtnq
41644 rmspecfund
41647 rmspecpos
41655 jm2.24nn
41698 jm2.17c
41701 fzmaxdif
41720 acongeq
41722 modabsdifz
41725 jm3.1lem2
41757 areaquad
41965 sqrtcvallem2
42388 sqrtcvallem3
42389 sqrtcval
42392 imo72b2lem0
42917 cvgdvgrat
43072 hashnzfzclim
43081 binomcxplemdvbinom
43112 oddfl
43987 lefldiveq
44002 fperiodmul
44014 fzdifsuc2
44020 suprltrp
44038 supxrgere
44043 supxrgelem
44047 suplesup
44049 infleinflem2
44081 infleinf
44082 xrralrecnnge
44100 iccshift
44231 iooshift
44235 iooiinicc
44255 fmul01lt1lem2
44301 climinf
44322 sumnnodd
44346 ltmod
44354 lptre2pt
44356 climleltrp
44392 limsupgtlem
44493 liminflimsupclim
44523 fperdvper
44635 dvbdfbdioolem1
44644 dvbdfbdioolem2
44645 dvbdfbdioo
44646 ioodvbdlimc1lem1
44647 ioodvbdlimc1lem2
44648 ioodvbdlimc2lem
44650 dvnmul
44659 iblspltprt
44689 itgspltprt
44695 itgiccshift
44696 itgperiod
44697 itgsbtaddcnst
44698 sublevolico
44700 stoweidlem1
44717 stoweidlem11
44727 stoweidlem12
44728 stoweidlem13
44729 stoweidlem14
44730 stoweidlem23
44739 stoweidlem24
44740 stoweidlem25
44741 stoweidlem26
44742 stoweidlem34
44750 stoweidlem40
44756 stoweidlem41
44757 stoweidlem42
44758 stoweidlem45
44761 stoweidlem60
44776 stoweidlem62
44778 wallispilem3
44783 wallispilem4
44784 wallispi
44786 wallispi2lem1
44787 stirlinglem5
44794 stirlinglem11
44800 stirlinglem12
44801 dirkercncflem1
44819 fourierdlem4
44827 fourierdlem6
44829 fourierdlem7
44830 fourierdlem9
44832 fourierdlem13
44836 fourierdlem14
44837 fourierdlem15
44838 fourierdlem19
44842 fourierdlem26
44849 fourierdlem35
44858 fourierdlem39
44862 fourierdlem40
44863 fourierdlem41
44864 fourierdlem42
44865 fourierdlem48
44870 fourierdlem49
44871 fourierdlem50
44872 fourierdlem51
44873 fourierdlem56
44878 fourierdlem57
44879 fourierdlem59
44881 fourierdlem60
44882 fourierdlem61
44883 fourierdlem63
44885 fourierdlem64
44886 fourierdlem65
44887 fourierdlem66
44888 fourierdlem68
44890 fourierdlem71
44893 fourierdlem72
44894 fourierdlem73
44895 fourierdlem74
44896 fourierdlem75
44897 fourierdlem76
44898 fourierdlem78
44900 fourierdlem79
44901 fourierdlem81
44903 fourierdlem82
44904 fourierdlem83
44905 fourierdlem84
44906 fourierdlem88
44910 fourierdlem89
44911 fourierdlem90
44912 fourierdlem91
44913 fourierdlem92
44914 fourierdlem93
44915 fourierdlem95
44917 fourierdlem97
44919 fourierdlem101
44923 fourierdlem103
44925 fourierdlem104
44926 fourierdlem107
44929 fourierdlem109
44931 fourierdlem111
44933 fouriersw
44947 elaa2lem
44949 etransclem23
44973 rrxtopnfi
45003 rrndistlt
45006 ioorrnopnlem
45020 ioorrnopnxrlem
45022 sge0gtfsumgt
45159 iundjiun
45176 volicorecl
45262 hoiprodcl
45263 hoiprodcl3
45296 volicore
45297 hoidmvcl
45298 hoidmv1lelem2
45308 hoidmv1lelem3
45309 hoidmv1le
45310 hoidmvlelem1
45311 hoidmvlelem2
45312 hoiqssbllem1
45338 hoiqssbllem2
45339 hoiqssbllem3
45340 hspmbllem1
45342 ovolval5lem1
45368 ovolval5lem2
45369 iunhoiioolem
45391 iccvonmbllem
45394 vonicclem1
45399 preimageiingt
45436 salpreimagtge
45441 smfaddlem1
45479 smflimlem4
45490 smfmullem1
45507 smfmullem2
45508 smfmullem3
45509 ltsubsubaddltsub
46009 2elfz2melfz
46026 requad01
46289 requad1
46290 requad2
46291 bgoldbtbndlem2
46474 bgoldbtbndlem3
46475 bgoldbtbndlem4
46476 bgoldbtbnd
46477 ply1mulgsumlem2
47068 difmodm1lt
47208 nnpw2pmod
47269 dignn0flhalflem1
47301 affinecomb1
47388 rrxlinesc
47421 rrxlinec
47422 eenglngeehlnmlem1
47423 eenglngeehlnmlem2
47424 rrx2vlinest
47427 rrx2linest2
47430 2sphere
47435 line2
47438 itsclc0lem2
47443 itsclc0lem3
47444 itscnhlc0yqe
47445 itsclc0yqsollem2
47449 itsclc0yqsol
47450 itscnhlc0xyqsol
47451 itsclinecirc0
47459 itsclinecirc0b
47460 itsclinecirc0in
47461 itsclquadb
47462 2itscp
47467 itscnhlinecirc02plem1
47468 itscnhlinecirc02p
47471 inlinecirc02plem
47472 amgmwlem
47849 |