Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2106
(class class class)co 7411 ℝcr 11111
− cmin 11446 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11252 df-mnf 11253 df-ltxr 11255 df-sub 11448 df-neg 11449 |
This theorem is referenced by: ltsubadd
11686 lesubadd
11688 lesub1
11710 lesub2
11711 ltsub1
11712 ltsub2
11713 lt2sub
11714 le2sub
11715 ltmul1a
12065 supaddc
12183 cru
12206 qbtwnre
13180 lincmb01cmp
13474 iccf1o
13475 xov1plusxeqvd
13477 intfracq
13826 fldiv
13827 modlt
13847 modsubdir
13907 modsumfzodifsn
13911 serle
14025 expmulnbnd
14200 discr
14205 fzsdom2
14390 cshwidxmod
14755 crre
15063 remullem
15077 01sqrexlem7
15197 absrdbnd
15290 fzomaxdiflem
15291 caubnd2
15306 amgm2
15318 icodiamlt
15384 bhmafibid1
15414 mulcn2
15542 reccn2
15543 rlimo1
15563 climle
15586 climsqz
15587 climsqz2
15588 rlimle
15596 isercolllem1
15613 climsup
15618 caucvgrlem
15621 caucvgrlem2
15623 iseraltlem2
15631 iseraltlem3
15632 iseralt
15633 fsumle
15747 cvgcmp
15764 cvgcmpce
15766 bpoly4
16005 eflt
16062 resinhcl
16101 tanhlt1
16105 sin01bnd
16130 sin01gt0
16135 moddvds
16210 bitscmp
16381 bitsinv1lem
16384 smueqlem
16433 modprm0
16740 pcbc
16835 4sqlem15
16894 blss2ps
23916 blss2
23917 blssps
23937 blss
23938 nm2dif
24141 nlmvscnlem2
24209 nrginvrcnlem
24215 iccntr
24344 icccmplem2
24346 metdstri
24374 cnllycmp
24479 evth
24482 lebnumii
24489 ipcnlem2
24768 cncmet
24846 rrxds
24917 rrxmval
24929 rrxmet
24932 rrxdstprj1
24933 rrxdsfi
24935 ehl1eudis
24944 ehl2eudis
24946 minveclem3b
24952 minveclem4
24956 ivthlem2
24976 ivthlem3
24977 ovollb2lem
25012 ovoliunlem1
25026 ovolscalem1
25037 ovolicc1
25040 ovolicc2lem4
25044 ovolicc2
25046 ovolicc
25047 voliunlem2
25075 ovolioo
25092 ioorcl2
25096 uniioovol
25103 uniioombllem2
25107 uniioombllem3a
25108 uniioombllem3
25109 uniioombllem4
25110 uniioombllem6
25112 opnmbllem
25125 volcn
25130 vitalilem2
25133 ismbf3d
25178 mbfaddlem
25184 i1fadd
25219 itg1addlem4
25223 itg1addlem4OLD
25224 mbfi1fseqlem6
25245 itg2seq
25267 itg2split
25274 itg2cnlem2
25287 itg2cn
25288 itgrevallem1
25319 dvcjbr
25473 dvferm1lem
25508 dvferm2lem
25510 cmvth
25515 mvth
25516 dvlip
25517 dvlip2
25519 c1liplem1
25520 dvgt0
25528 dvlt0
25529 dvge0
25530 dvle
25531 dvivthlem1
25532 lhop1lem
25537 lhop
25540 dvcnvrelem1
25541 dvcnvrelem2
25542 dvcnvre
25543 dvcvx
25544 dvfsumle
25545 dvfsumge
25546 dvfsumrlimf
25549 dvfsumlem2
25551 dvfsumlem3
25552 dvfsumlem4
25553 dvfsum2
25558 ftc1a
25561 ftc1lem4
25563 coe1mul3
25624 ply1divex
25661 plydivex
25817 aalioulem2
25853 aalioulem3
25854 aalioulem4
25855 aalioulem5
25856 aalioulem6
25857 aaliou3lem7
25869 taylthlem2
25893 mtest
25923 pilem2
25971 tangtx
26022 cosordlem
26046 efif1olem2
26059 logcnlem3
26159 logcnlem4
26160 isosctrlem2
26331 chordthmlem2
26345 chordthmlem4
26347 heron
26350 atanlogsublem
26427 atantan
26435 birthdaylem3
26465 logdifbnd
26505 emcllem1
26507 emcllem2
26508 emcllem5
26511 emcllem6
26512 harmonicbnd4
26522 fsumharmonic
26523 lgamgulmlem2
26541 lgamgulmlem3
26542 lgamucov
26549 relgamcl
26573 ftalem2
26585 ftalem5
26588 chpub
26730 logfaclbnd
26732 logfacbnd3
26733 logexprlim
26735 bposlem1
26794 bposlem9
26802 gausslemma2dlem1a
26875 lgseisenlem1
26885 lgsquadlem1
26890 2sqmod
26946 chtppilimlem1
26983 vmadivsum
26992 vmadivsumb
26993 rplogsumlem1
26994 rplogsumlem2
26995 rpvmasumlem
26997 dchrisumlem2
27000 dchrisum0re
27023 rplogsum
27037 mulogsumlem
27041 mulog2sumlem1
27044 vmalogdivsum2
27048 vmalogdivsum
27049 2vmadivsumlem
27050 log2sumbnd
27054 selbergb
27059 selberg2lem
27060 selberg2b
27062 chpdifbndlem1
27063 selberg3lem1
27067 selberg3lem2
27068 selberg3
27069 selberg4lem1
27070 selberg4
27071 pntrf
27073 pntrmax
27074 pntrsumo1
27075 selberg3r
27079 selberg4r
27080 selberg34r
27081 pntrlog2bndlem1
27087 pntrlog2bndlem2
27088 pntrlog2bndlem3
27089 pntrlog2bndlem4
27090 pntrlog2bndlem5
27091 pntrlog2bndlem6
27093 pntrlog2bnd
27094 pntpbnd1a
27095 pntpbnd2
27097 pntibndlem2
27101 pntlemg
27108 pntlemn
27110 pntlemj
27113 pntlemf
27115 pntlemo
27117 pntlem3
27119 pntleml
27121 ttgcontlem1
28180 eqeelen
28200 brbtwn2
28201 colinearalg
28206 axcgrid
28212 axsegconlem1
28213 axsegconlem3
28215 axsegconlem8
28220 axsegconlem9
28221 axsegconlem10
28222 ax5seglem3a
28226 ax5seg
28234 axpaschlem
28236 axcontlem8
28267 nbusgrvtxm1
28674 crctcshwlkn0lem3
29104 crctcshwlkn0lem5
29106 crctcsh
29116 clwlkclwwlklem2fv2
29287 clwlkclwwlklem2a4
29288 clwlkclwwlklem2a
29289 nvabs
29963 dipcj
30005 minvecolem4
30171 lt2addrd
32002 xlt2addrd
32009 fzsplit3
32043 bcm1n
32044 ply1degltel
32711 ply1degltlss
32713 submateqlem1
32856 cnre2csqlem
32959 tpr2rico
32961 dya2ub
33338 dya2icoseg
33345 ballotlemfcc
33561 ballotlemfrcn0
33597 sgnsub
33612 signslema
33642 ftc2re
33679 subfacval3
34249 gg-cmvth
35250 gg-dvfsumle
35251 gg-dvfsumlem2
35252 dnibndlem8
35447 dnibndlem10
35449 dnibndlem11
35450 dnibndlem12
35451 dnicn
35454 knoppcnlem4
35458 unblimceq0
35469 unbdqndv2lem2
35472 knoppndvlem11
35484 knoppndvlem14
35487 knoppndvlem15
35488 knoppndvlem17
35490 knoppndvlem20
35493 irrdifflemf
36292 poimirlem29
36603 broucube
36608 opnmbllem0
36610 mblfinlem3
36613 mblfinlem4
36614 itg2addnclem
36625 itg2addnclem3
36627 itg2gt0cn
36629 ftc1cnnclem
36645 areacirclem1
36662 areacirclem2
36663 areacirclem4
36665 areacirclem5
36666 areacirc
36667 cntotbnd
36750 rrnmet
36783 rrndstprj1
36784 rrndstprj2
36785 lcmineqlem23
41002 intlewftc
41012 aks4d1p1p2
41021 aks4d1p1p4
41022 dvle2
41023 aks4d1p1
41027 sticksstones10
41057 sticksstones12a
41059 sticksstones12
41060 metakunt1
41071 metakunt7
41077 metakunt16
41086 metakunt18
41088 metakunt28
41098 metakunt29
41099 metakunt30
41100 frlmvscadiccat
41166 fltnlta
41487 3cubeslem2
41505 3cubeslem4
41509 irrapxlem2
41643 irrapxlem3
41644 irrapxlem4
41645 irrapxlem5
41646 pellexlem2
41650 pellexlem6
41654 pell1qrgaplem
41693 rmspecsqrtnq
41726 rmspecfund
41729 rmspecpos
41737 jm2.24nn
41780 jm2.17c
41783 fzmaxdif
41802 acongeq
41804 modabsdifz
41807 jm3.1lem2
41839 areaquad
42047 sqrtcvallem2
42470 sqrtcvallem3
42471 sqrtcval
42474 imo72b2lem0
42999 cvgdvgrat
43154 hashnzfzclim
43163 binomcxplemdvbinom
43194 oddfl
44066 lefldiveq
44081 fperiodmul
44093 fzdifsuc2
44099 suprltrp
44117 supxrgere
44122 supxrgelem
44126 suplesup
44128 infleinflem2
44160 infleinf
44161 xrralrecnnge
44179 iccshift
44310 iooshift
44314 iooiinicc
44334 fmul01lt1lem2
44380 climinf
44401 sumnnodd
44425 ltmod
44433 lptre2pt
44435 climleltrp
44471 limsupgtlem
44572 liminflimsupclim
44602 fperdvper
44714 dvbdfbdioolem1
44723 dvbdfbdioolem2
44724 dvbdfbdioo
44725 ioodvbdlimc1lem1
44726 ioodvbdlimc1lem2
44727 ioodvbdlimc2lem
44729 dvnmul
44738 iblspltprt
44768 itgspltprt
44774 itgiccshift
44775 itgperiod
44776 itgsbtaddcnst
44777 sublevolico
44779 stoweidlem1
44796 stoweidlem11
44806 stoweidlem12
44807 stoweidlem13
44808 stoweidlem14
44809 stoweidlem23
44818 stoweidlem24
44819 stoweidlem25
44820 stoweidlem26
44821 stoweidlem34
44829 stoweidlem40
44835 stoweidlem41
44836 stoweidlem42
44837 stoweidlem45
44840 stoweidlem60
44855 stoweidlem62
44857 wallispilem3
44862 wallispilem4
44863 wallispi
44865 wallispi2lem1
44866 stirlinglem5
44873 stirlinglem11
44879 stirlinglem12
44880 dirkercncflem1
44898 fourierdlem4
44906 fourierdlem6
44908 fourierdlem7
44909 fourierdlem9
44911 fourierdlem13
44915 fourierdlem14
44916 fourierdlem15
44917 fourierdlem19
44921 fourierdlem26
44928 fourierdlem35
44937 fourierdlem39
44941 fourierdlem40
44942 fourierdlem41
44943 fourierdlem42
44944 fourierdlem48
44949 fourierdlem49
44950 fourierdlem50
44951 fourierdlem51
44952 fourierdlem56
44957 fourierdlem57
44958 fourierdlem59
44960 fourierdlem60
44961 fourierdlem61
44962 fourierdlem63
44964 fourierdlem64
44965 fourierdlem65
44966 fourierdlem66
44967 fourierdlem68
44969 fourierdlem71
44972 fourierdlem72
44973 fourierdlem73
44974 fourierdlem74
44975 fourierdlem75
44976 fourierdlem76
44977 fourierdlem78
44979 fourierdlem79
44980 fourierdlem81
44982 fourierdlem82
44983 fourierdlem83
44984 fourierdlem84
44985 fourierdlem88
44989 fourierdlem89
44990 fourierdlem90
44991 fourierdlem91
44992 fourierdlem92
44993 fourierdlem93
44994 fourierdlem95
44996 fourierdlem97
44998 fourierdlem101
45002 fourierdlem103
45004 fourierdlem104
45005 fourierdlem107
45008 fourierdlem109
45010 fourierdlem111
45012 fouriersw
45026 elaa2lem
45028 etransclem23
45052 rrxtopnfi
45082 rrndistlt
45085 ioorrnopnlem
45099 ioorrnopnxrlem
45101 sge0gtfsumgt
45238 iundjiun
45255 volicorecl
45341 hoiprodcl
45342 hoiprodcl3
45375 volicore
45376 hoidmvcl
45377 hoidmv1lelem2
45387 hoidmv1lelem3
45388 hoidmv1le
45389 hoidmvlelem1
45390 hoidmvlelem2
45391 hoiqssbllem1
45417 hoiqssbllem2
45418 hoiqssbllem3
45419 hspmbllem1
45421 ovolval5lem1
45447 ovolval5lem2
45448 iunhoiioolem
45470 iccvonmbllem
45473 vonicclem1
45478 preimageiingt
45515 salpreimagtge
45520 smfaddlem1
45558 smflimlem4
45569 smfmullem1
45586 smfmullem2
45587 smfmullem3
45588 ltsubsubaddltsub
46088 2elfz2melfz
46105 requad01
46368 requad1
46369 requad2
46370 bgoldbtbndlem2
46553 bgoldbtbndlem3
46554 bgoldbtbndlem4
46555 bgoldbtbnd
46556 ply1mulgsumlem2
47146 difmodm1lt
47286 nnpw2pmod
47347 dignn0flhalflem1
47379 affinecomb1
47466 rrxlinesc
47499 rrxlinec
47500 eenglngeehlnmlem1
47501 eenglngeehlnmlem2
47502 rrx2vlinest
47505 rrx2linest2
47508 2sphere
47513 line2
47516 itsclc0lem2
47521 itsclc0lem3
47522 itscnhlc0yqe
47523 itsclc0yqsollem2
47527 itsclc0yqsol
47528 itscnhlc0xyqsol
47529 itsclinecirc0
47537 itsclinecirc0b
47538 itsclinecirc0in
47539 itsclquadb
47540 2itscp
47545 itscnhlinecirc02plem1
47546 itscnhlinecirc02p
47549 inlinecirc02plem
47550 amgmwlem
47927 |