Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mvrladdi | Structured version Visualization version GIF version |
Description: Move the left term in a sum on the RHS to the LHS. (Contributed by David A. Wheeler, 11-Oct-2018.) |
Ref | Expression |
---|---|
mvrladdi.1 | ⊢ 𝐵 ∈ ℂ |
mvrladdi.2 | ⊢ 𝐶 ∈ ℂ |
mvrladdi.3 | ⊢ 𝐴 = (𝐵 + 𝐶) |
Ref | Expression |
---|---|
mvrladdi | ⊢ (𝐴 − 𝐵) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvrladdi.1 | . . . 4 ⊢ 𝐵 ∈ ℂ | |
2 | mvrladdi.2 | . . . 4 ⊢ 𝐶 ∈ ℂ | |
3 | mvrladdi.3 | . . . 4 ⊢ 𝐴 = (𝐵 + 𝐶) | |
4 | 1, 2, 3 | comraddi 46359 | . . 3 ⊢ 𝐴 = (𝐶 + 𝐵) |
5 | 4 | oveq1i 7265 | . 2 ⊢ (𝐴 − 𝐵) = ((𝐶 + 𝐵) − 𝐵) |
6 | 2, 1 | pncan3oi 11167 | . 2 ⊢ ((𝐶 + 𝐵) − 𝐵) = 𝐶 |
7 | 5, 6 | eqtri 2766 | 1 ⊢ (𝐴 − 𝐵) = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 + caddc 10805 − cmin 11135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 |
This theorem is referenced by: i2linesi 46368 |
Copyright terms: Public domain | W3C validator |