MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pncan3oi Structured version   Visualization version   GIF version

Theorem pncan3oi 11371
Description: Subtraction and addition of equals. Almost but not exactly the same as pncan3i 11433 and pncan 11361, this order happens often when applying "operations to both sides" so create a theorem specifically for it. A deduction version of this is available as pncand 11468. (Contributed by David A. Wheeler, 11-Oct-2018.)
Hypotheses
Ref Expression
pncan3oi.1 𝐴 ∈ ℂ
pncan3oi.2 𝐵 ∈ ℂ
Assertion
Ref Expression
pncan3oi ((𝐴 + 𝐵) − 𝐵) = 𝐴

Proof of Theorem pncan3oi
StepHypRef Expression
1 pncan3oi.1 . 2 𝐴 ∈ ℂ
2 pncan3oi.2 . 2 𝐵 ∈ ℂ
3 pncan 11361 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴)
41, 2, 3mp2an 692 1 ((𝐴 + 𝐵) − 𝐵) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  (class class class)co 7341  cc 10999   + caddc 11004  cmin 11339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-ltxr 11146  df-sub 11341
This theorem is referenced by:  mvrraddi  11372  mvrladdi  11373  mvlladdi  11374  climcndslem1  15751  3dvds  16237  2503prm  17046  ovolicc2lem4  25443  eff1o  26480  basellem8  27020  bposlem6  27222  bposlem8  27224  lnfn0i  32014  lmatfvlem  33820  quad3  35706  poimirlem16  37676  poimirlem17  37677  poimirlem19  37679  poimirlem20  37680  fdc  37785  heiborlem6  37856  areaquad  43249  inductionexd  44188  stoweidlem34  46072  fouriersw  46269  mvlraddi  49803
  Copyright terms: Public domain W3C validator