| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pncan3oi | Structured version Visualization version GIF version | ||
| Description: Subtraction and addition of equals. Almost but not exactly the same as pncan3i 11553 and pncan 11481, this order happens often when applying "operations to both sides" so create a theorem specifically for it. A deduction version of this is available as pncand 11588. (Contributed by David A. Wheeler, 11-Oct-2018.) |
| Ref | Expression |
|---|---|
| pncan3oi.1 | ⊢ 𝐴 ∈ ℂ |
| pncan3oi.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| pncan3oi | ⊢ ((𝐴 + 𝐵) − 𝐵) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pncan3oi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | pncan3oi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | pncan 11481 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ((𝐴 + 𝐵) − 𝐵) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 (class class class)co 7400 ℂcc 11120 + caddc 11125 − cmin 11459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-po 5559 df-so 5560 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-ltxr 11267 df-sub 11461 |
| This theorem is referenced by: mvrraddi 11492 mvrladdi 11493 mvlladdi 11494 climcndslem1 15854 3dvds 16337 2503prm 17146 ovolicc2lem4 25460 eff1o 26496 basellem8 27036 bposlem6 27238 bposlem8 27240 lnfn0i 31957 lmatfvlem 33775 quad3 35621 poimirlem16 37589 poimirlem17 37590 poimirlem19 37592 poimirlem20 37593 fdc 37698 heiborlem6 37769 areaquad 43172 inductionexd 44111 stoweidlem34 45999 fouriersw 46196 mvlraddi 49476 |
| Copyright terms: Public domain | W3C validator |