| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pncan3oi | Structured version Visualization version GIF version | ||
| Description: Subtraction and addition of equals. Almost but not exactly the same as pncan3i 11449 and pncan 11377, this order happens often when applying "operations to both sides" so create a theorem specifically for it. A deduction version of this is available as pncand 11484. (Contributed by David A. Wheeler, 11-Oct-2018.) |
| Ref | Expression |
|---|---|
| pncan3oi.1 | ⊢ 𝐴 ∈ ℂ |
| pncan3oi.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| pncan3oi | ⊢ ((𝐴 + 𝐵) − 𝐵) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pncan3oi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | pncan3oi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | pncan 11377 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ((𝐴 + 𝐵) − 𝐵) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 (class class class)co 7355 ℂcc 11015 + caddc 11020 − cmin 11355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-ltxr 11162 df-sub 11357 |
| This theorem is referenced by: mvrraddi 11388 mvrladdi 11389 mvlladdi 11390 climcndslem1 15763 3dvds 16249 2503prm 17058 ovolicc2lem4 25468 eff1o 26505 basellem8 27045 bposlem6 27247 bposlem8 27249 lnfn0i 32043 lmatfvlem 33900 quad3 35786 poimirlem16 37749 poimirlem17 37750 poimirlem19 37752 poimirlem20 37753 fdc 37858 heiborlem6 37929 areaquad 43373 inductionexd 44312 stoweidlem34 46194 fouriersw 46391 mvlraddi 49932 |
| Copyright terms: Public domain | W3C validator |