Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pncan3oi Structured version   Visualization version   GIF version

Theorem pncan3oi 10905
 Description: Subtraction and addition of equals. Almost but not exactly the same as pncan3i 10966 and pncan 10895, this order happens often when applying "operations to both sides" so create a theorem specifically for it. A deduction version of this is available as pncand 11001. (Contributed by David A. Wheeler, 11-Oct-2018.)
Hypotheses
Ref Expression
pncan3oi.1 𝐴 ∈ ℂ
pncan3oi.2 𝐵 ∈ ℂ
Assertion
Ref Expression
pncan3oi ((𝐴 + 𝐵) − 𝐵) = 𝐴

Proof of Theorem pncan3oi
StepHypRef Expression
1 pncan3oi.1 . 2 𝐴 ∈ ℂ
2 pncan3oi.2 . 2 𝐵 ∈ ℂ
3 pncan 10895 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴)
41, 2, 3mp2an 690 1 ((𝐴 + 𝐵) − 𝐵) = 𝐴
 Colors of variables: wff setvar class Syntax hints:   = wceq 1536   ∈ wcel 2113  (class class class)co 7159  ℂcc 10538   + caddc 10543   − cmin 10873 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-ltxr 10683  df-sub 10875 This theorem is referenced by:  mvrraddi  10906  mvlladdi  10907  climcndslem1  15207  3dvds  15683  2503prm  16476  ovolicc2lem4  24124  eff1o  25136  basellem8  25668  bposlem6  25868  bposlem8  25870  lnfn0i  29822  lmatfvlem  31084  quad3  32917  poimirlem16  34912  poimirlem17  34913  poimirlem19  34915  poimirlem20  34916  fdc  35024  heiborlem6  35098  areaquad  39829  inductionexd  40511  stoweidlem34  42326  fouriersw  42523  mvlraddi  44878  mvrladdi  44879
 Copyright terms: Public domain W3C validator