| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > osumcllem8N | Structured version Visualization version GIF version | ||
| Description: Lemma for osumclN 39932. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| osumcllem.l | ⊢ ≤ = (le‘𝐾) |
| osumcllem.j | ⊢ ∨ = (join‘𝐾) |
| osumcllem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| osumcllem.p | ⊢ + = (+𝑃‘𝐾) |
| osumcllem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| osumcllem.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
| osumcllem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
| osumcllem.u | ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) |
| Ref | Expression |
|---|---|
| osumcllem8N | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌 ∩ 𝑀) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4328 | . . . 4 ⊢ ((𝑌 ∩ 𝑀) ≠ ∅ ↔ ∃𝑞 𝑞 ∈ (𝑌 ∩ 𝑀)) | |
| 2 | osumcllem.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
| 3 | osumcllem.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
| 4 | osumcllem.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | osumcllem.p | . . . . . . 7 ⊢ + = (+𝑃‘𝐾) | |
| 6 | osumcllem.o | . . . . . . 7 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 7 | osumcllem.c | . . . . . . 7 ⊢ 𝐶 = (PSubCl‘𝐾) | |
| 8 | osumcllem.m | . . . . . . 7 ⊢ 𝑀 = (𝑋 + {𝑝}) | |
| 9 | osumcllem.u | . . . . . . 7 ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) | |
| 10 | 2, 3, 4, 5, 6, 7, 8, 9 | osumcllem7N 39927 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) → 𝑝 ∈ (𝑋 + 𝑌)) |
| 11 | 10 | 3expia 1121 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴)) → (𝑞 ∈ (𝑌 ∩ 𝑀) → 𝑝 ∈ (𝑋 + 𝑌))) |
| 12 | 11 | exlimdv 1933 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴)) → (∃𝑞 𝑞 ∈ (𝑌 ∩ 𝑀) → 𝑝 ∈ (𝑋 + 𝑌))) |
| 13 | 1, 12 | biimtrid 242 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴)) → ((𝑌 ∩ 𝑀) ≠ ∅ → 𝑝 ∈ (𝑋 + 𝑌))) |
| 14 | 13 | necon1bd 2950 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴)) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑌 ∩ 𝑀) = ∅)) |
| 15 | 14 | 3impia 1117 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌 ∩ 𝑀) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 {csn 4601 ‘cfv 6530 (class class class)co 7403 lecple 17276 joincjn 18321 Atomscatm 39227 HLchlt 39314 +𝑃cpadd 39760 ⊥𝑃cpolN 39867 PSubClcpscN 39899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-proset 18304 df-poset 18323 df-plt 18338 df-lub 18354 df-glb 18355 df-join 18356 df-meet 18357 df-p0 18433 df-p1 18434 df-lat 18440 df-clat 18507 df-oposet 39140 df-ol 39142 df-oml 39143 df-covers 39230 df-ats 39231 df-atl 39262 df-cvlat 39286 df-hlat 39315 df-pmap 39469 df-padd 39761 df-polarityN 39868 |
| This theorem is referenced by: osumcllem9N 39929 |
| Copyright terms: Public domain | W3C validator |