| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > osumcllem8N | Structured version Visualization version GIF version | ||
| Description: Lemma for osumclN 40006. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| osumcllem.l | ⊢ ≤ = (le‘𝐾) |
| osumcllem.j | ⊢ ∨ = (join‘𝐾) |
| osumcllem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| osumcllem.p | ⊢ + = (+𝑃‘𝐾) |
| osumcllem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| osumcllem.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
| osumcllem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
| osumcllem.u | ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) |
| Ref | Expression |
|---|---|
| osumcllem8N | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌 ∩ 𝑀) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4298 | . . . 4 ⊢ ((𝑌 ∩ 𝑀) ≠ ∅ ↔ ∃𝑞 𝑞 ∈ (𝑌 ∩ 𝑀)) | |
| 2 | osumcllem.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
| 3 | osumcllem.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
| 4 | osumcllem.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | osumcllem.p | . . . . . . 7 ⊢ + = (+𝑃‘𝐾) | |
| 6 | osumcllem.o | . . . . . . 7 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 7 | osumcllem.c | . . . . . . 7 ⊢ 𝐶 = (PSubCl‘𝐾) | |
| 8 | osumcllem.m | . . . . . . 7 ⊢ 𝑀 = (𝑋 + {𝑝}) | |
| 9 | osumcllem.u | . . . . . . 7 ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) | |
| 10 | 2, 3, 4, 5, 6, 7, 8, 9 | osumcllem7N 40001 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) → 𝑝 ∈ (𝑋 + 𝑌)) |
| 11 | 10 | 3expia 1121 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴)) → (𝑞 ∈ (𝑌 ∩ 𝑀) → 𝑝 ∈ (𝑋 + 𝑌))) |
| 12 | 11 | exlimdv 1934 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴)) → (∃𝑞 𝑞 ∈ (𝑌 ∩ 𝑀) → 𝑝 ∈ (𝑋 + 𝑌))) |
| 13 | 1, 12 | biimtrid 242 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴)) → ((𝑌 ∩ 𝑀) ≠ ∅ → 𝑝 ∈ (𝑋 + 𝑌))) |
| 14 | 13 | necon1bd 2946 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴)) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑌 ∩ 𝑀) = ∅)) |
| 15 | 14 | 3impia 1117 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌 ∩ 𝑀) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∩ cin 3896 ⊆ wss 3897 ∅c0 4278 {csn 4571 ‘cfv 6476 (class class class)co 7341 lecple 17163 joincjn 18212 Atomscatm 39302 HLchlt 39389 +𝑃cpadd 39834 ⊥𝑃cpolN 39941 PSubClcpscN 39973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-proset 18195 df-poset 18214 df-plt 18229 df-lub 18245 df-glb 18246 df-join 18247 df-meet 18248 df-p0 18324 df-p1 18325 df-lat 18333 df-clat 18400 df-oposet 39215 df-ol 39217 df-oml 39218 df-covers 39305 df-ats 39306 df-atl 39337 df-cvlat 39361 df-hlat 39390 df-pmap 39543 df-padd 39835 df-polarityN 39942 |
| This theorem is referenced by: osumcllem9N 40003 |
| Copyright terms: Public domain | W3C validator |