| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > osumcllem8N | Structured version Visualization version GIF version | ||
| Description: Lemma for osumclN 39969. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| osumcllem.l | ⊢ ≤ = (le‘𝐾) |
| osumcllem.j | ⊢ ∨ = (join‘𝐾) |
| osumcllem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| osumcllem.p | ⊢ + = (+𝑃‘𝐾) |
| osumcllem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| osumcllem.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
| osumcllem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
| osumcllem.u | ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) |
| Ref | Expression |
|---|---|
| osumcllem8N | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌 ∩ 𝑀) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4353 | . . . 4 ⊢ ((𝑌 ∩ 𝑀) ≠ ∅ ↔ ∃𝑞 𝑞 ∈ (𝑌 ∩ 𝑀)) | |
| 2 | osumcllem.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
| 3 | osumcllem.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
| 4 | osumcllem.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | osumcllem.p | . . . . . . 7 ⊢ + = (+𝑃‘𝐾) | |
| 6 | osumcllem.o | . . . . . . 7 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 7 | osumcllem.c | . . . . . . 7 ⊢ 𝐶 = (PSubCl‘𝐾) | |
| 8 | osumcllem.m | . . . . . . 7 ⊢ 𝑀 = (𝑋 + {𝑝}) | |
| 9 | osumcllem.u | . . . . . . 7 ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) | |
| 10 | 2, 3, 4, 5, 6, 7, 8, 9 | osumcllem7N 39964 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) → 𝑝 ∈ (𝑋 + 𝑌)) |
| 11 | 10 | 3expia 1122 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴)) → (𝑞 ∈ (𝑌 ∩ 𝑀) → 𝑝 ∈ (𝑋 + 𝑌))) |
| 12 | 11 | exlimdv 1933 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴)) → (∃𝑞 𝑞 ∈ (𝑌 ∩ 𝑀) → 𝑝 ∈ (𝑋 + 𝑌))) |
| 13 | 1, 12 | biimtrid 242 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴)) → ((𝑌 ∩ 𝑀) ≠ ∅ → 𝑝 ∈ (𝑋 + 𝑌))) |
| 14 | 13 | necon1bd 2958 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴)) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑌 ∩ 𝑀) = ∅)) |
| 15 | 14 | 3impia 1118 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌 ∩ 𝑀) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2940 ∩ cin 3950 ⊆ wss 3951 ∅c0 4333 {csn 4626 ‘cfv 6561 (class class class)co 7431 lecple 17304 joincjn 18357 Atomscatm 39264 HLchlt 39351 +𝑃cpadd 39797 ⊥𝑃cpolN 39904 PSubClcpscN 39936 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-proset 18340 df-poset 18359 df-plt 18375 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-p0 18470 df-p1 18471 df-lat 18477 df-clat 18544 df-oposet 39177 df-ol 39179 df-oml 39180 df-covers 39267 df-ats 39268 df-atl 39299 df-cvlat 39323 df-hlat 39352 df-pmap 39506 df-padd 39798 df-polarityN 39905 |
| This theorem is referenced by: osumcllem9N 39966 |
| Copyright terms: Public domain | W3C validator |