Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem8N Structured version   Visualization version   GIF version

Theorem osumcllem8N 39945
Description: Lemma for osumclN 39949. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem8N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌𝑀) = ∅)

Proof of Theorem osumcllem8N
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 n0 4306 . . . 4 ((𝑌𝑀) ≠ ∅ ↔ ∃𝑞 𝑞 ∈ (𝑌𝑀))
2 osumcllem.l . . . . . . 7 = (le‘𝐾)
3 osumcllem.j . . . . . . 7 = (join‘𝐾)
4 osumcllem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
5 osumcllem.p . . . . . . 7 + = (+𝑃𝐾)
6 osumcllem.o . . . . . . 7 = (⊥𝑃𝐾)
7 osumcllem.c . . . . . . 7 𝐶 = (PSubCl‘𝐾)
8 osumcllem.m . . . . . . 7 𝑀 = (𝑋 + {𝑝})
9 osumcllem.u . . . . . . 7 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
102, 3, 4, 5, 6, 7, 8, 9osumcllem7N 39944 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑝 ∈ (𝑋 + 𝑌))
11103expia 1121 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴)) → (𝑞 ∈ (𝑌𝑀) → 𝑝 ∈ (𝑋 + 𝑌)))
1211exlimdv 1933 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴)) → (∃𝑞 𝑞 ∈ (𝑌𝑀) → 𝑝 ∈ (𝑋 + 𝑌)))
131, 12biimtrid 242 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴)) → ((𝑌𝑀) ≠ ∅ → 𝑝 ∈ (𝑋 + 𝑌)))
1413necon1bd 2943 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴)) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑌𝑀) = ∅))
15143impia 1117 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌𝑀) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  cin 3904  wss 3905  c0 4286  {csn 4579  cfv 6486  (class class class)co 7353  lecple 17186  joincjn 18235  Atomscatm 39244  HLchlt 39331  +𝑃cpadd 39777  𝑃cpolN 39884  PSubClcpscN 39916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-pmap 39486  df-padd 39778  df-polarityN 39885
This theorem is referenced by:  osumcllem9N  39946
  Copyright terms: Public domain W3C validator