Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem8N Structured version   Visualization version   GIF version

Theorem osumcllem8N 40135
Description: Lemma for osumclN 40139. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem8N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌𝑀) = ∅)

Proof of Theorem osumcllem8N
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 n0 4302 . . . 4 ((𝑌𝑀) ≠ ∅ ↔ ∃𝑞 𝑞 ∈ (𝑌𝑀))
2 osumcllem.l . . . . . . 7 = (le‘𝐾)
3 osumcllem.j . . . . . . 7 = (join‘𝐾)
4 osumcllem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
5 osumcllem.p . . . . . . 7 + = (+𝑃𝐾)
6 osumcllem.o . . . . . . 7 = (⊥𝑃𝐾)
7 osumcllem.c . . . . . . 7 𝐶 = (PSubCl‘𝐾)
8 osumcllem.m . . . . . . 7 𝑀 = (𝑋 + {𝑝})
9 osumcllem.u . . . . . . 7 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
102, 3, 4, 5, 6, 7, 8, 9osumcllem7N 40134 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑝 ∈ (𝑋 + 𝑌))
11103expia 1121 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴)) → (𝑞 ∈ (𝑌𝑀) → 𝑝 ∈ (𝑋 + 𝑌)))
1211exlimdv 1934 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴)) → (∃𝑞 𝑞 ∈ (𝑌𝑀) → 𝑝 ∈ (𝑋 + 𝑌)))
131, 12biimtrid 242 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴)) → ((𝑌𝑀) ≠ ∅ → 𝑝 ∈ (𝑋 + 𝑌)))
1413necon1bd 2947 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴)) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑌𝑀) = ∅))
15143impia 1117 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌𝑀) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wne 2929  cin 3897  wss 3898  c0 4282  {csn 4577  cfv 6489  (class class class)co 7355  lecple 17175  joincjn 18225  Atomscatm 39435  HLchlt 39522  +𝑃cpadd 39967  𝑃cpolN 40074  PSubClcpscN 40106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-proset 18208  df-poset 18227  df-plt 18242  df-lub 18258  df-glb 18259  df-join 18260  df-meet 18261  df-p0 18337  df-p1 18338  df-lat 18346  df-clat 18413  df-oposet 39348  df-ol 39350  df-oml 39351  df-covers 39438  df-ats 39439  df-atl 39470  df-cvlat 39494  df-hlat 39523  df-pmap 39676  df-padd 39968  df-polarityN 40075
This theorem is referenced by:  osumcllem9N  40136
  Copyright terms: Public domain W3C validator