| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > osumcllem8N | Structured version Visualization version GIF version | ||
| Description: Lemma for osumclN 39968. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| osumcllem.l | ⊢ ≤ = (le‘𝐾) |
| osumcllem.j | ⊢ ∨ = (join‘𝐾) |
| osumcllem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| osumcllem.p | ⊢ + = (+𝑃‘𝐾) |
| osumcllem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| osumcllem.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
| osumcllem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
| osumcllem.u | ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) |
| Ref | Expression |
|---|---|
| osumcllem8N | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌 ∩ 𝑀) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4319 | . . . 4 ⊢ ((𝑌 ∩ 𝑀) ≠ ∅ ↔ ∃𝑞 𝑞 ∈ (𝑌 ∩ 𝑀)) | |
| 2 | osumcllem.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
| 3 | osumcllem.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
| 4 | osumcllem.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | osumcllem.p | . . . . . . 7 ⊢ + = (+𝑃‘𝐾) | |
| 6 | osumcllem.o | . . . . . . 7 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 7 | osumcllem.c | . . . . . . 7 ⊢ 𝐶 = (PSubCl‘𝐾) | |
| 8 | osumcllem.m | . . . . . . 7 ⊢ 𝑀 = (𝑋 + {𝑝}) | |
| 9 | osumcllem.u | . . . . . . 7 ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) | |
| 10 | 2, 3, 4, 5, 6, 7, 8, 9 | osumcllem7N 39963 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) → 𝑝 ∈ (𝑋 + 𝑌)) |
| 11 | 10 | 3expia 1121 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴)) → (𝑞 ∈ (𝑌 ∩ 𝑀) → 𝑝 ∈ (𝑋 + 𝑌))) |
| 12 | 11 | exlimdv 1933 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴)) → (∃𝑞 𝑞 ∈ (𝑌 ∩ 𝑀) → 𝑝 ∈ (𝑋 + 𝑌))) |
| 13 | 1, 12 | biimtrid 242 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴)) → ((𝑌 ∩ 𝑀) ≠ ∅ → 𝑝 ∈ (𝑋 + 𝑌))) |
| 14 | 13 | necon1bd 2944 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴)) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑌 ∩ 𝑀) = ∅)) |
| 15 | 14 | 3impia 1117 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌 ∩ 𝑀) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 {csn 4592 ‘cfv 6514 (class class class)co 7390 lecple 17234 joincjn 18279 Atomscatm 39263 HLchlt 39350 +𝑃cpadd 39796 ⊥𝑃cpolN 39903 PSubClcpscN 39935 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-proset 18262 df-poset 18281 df-plt 18296 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-p0 18391 df-p1 18392 df-lat 18398 df-clat 18465 df-oposet 39176 df-ol 39178 df-oml 39179 df-covers 39266 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 df-pmap 39505 df-padd 39797 df-polarityN 39904 |
| This theorem is referenced by: osumcllem9N 39965 |
| Copyright terms: Public domain | W3C validator |