![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochsat0 | Structured version Visualization version GIF version |
Description: The orthocomplement of a kernel is either an atom or zero. (Contributed by NM, 29-Jan-2015.) |
Ref | Expression |
---|---|
dochsat0.h | β’ π» = (LHypβπΎ) |
dochsat0.o | β’ β₯ = ((ocHβπΎ)βπ) |
dochsat0.u | β’ π = ((DVecHβπΎ)βπ) |
dochsat0.z | β’ 0 = (0gβπ) |
dochsat0.a | β’ π΄ = (LSAtomsβπ) |
dochsat0.f | β’ πΉ = (LFnlβπ) |
dochsat0.l | β’ πΏ = (LKerβπ) |
dochsat0.k | β’ (π β (πΎ β HL β§ π β π»)) |
dochsat0.g | β’ (π β πΊ β πΉ) |
Ref | Expression |
---|---|
dochsat0 | β’ (π β (( β₯ β(πΏβπΊ)) β π΄ β¨ ( β₯ β(πΏβπΊ)) = { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochsat0.h | . . . . 5 β’ π» = (LHypβπΎ) | |
2 | dochsat0.o | . . . . 5 β’ β₯ = ((ocHβπΎ)βπ) | |
3 | dochsat0.u | . . . . 5 β’ π = ((DVecHβπΎ)βπ) | |
4 | dochsat0.a | . . . . 5 β’ π΄ = (LSAtomsβπ) | |
5 | dochsat0.f | . . . . 5 β’ πΉ = (LFnlβπ) | |
6 | dochsat0.l | . . . . 5 β’ πΏ = (LKerβπ) | |
7 | dochsat0.z | . . . . 5 β’ 0 = (0gβπ) | |
8 | dochsat0.k | . . . . 5 β’ (π β (πΎ β HL β§ π β π»)) | |
9 | dochsat0.g | . . . . 5 β’ (π β πΊ β πΉ) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | dochkrsat 40629 | . . . 4 β’ (π β (( β₯ β(πΏβπΊ)) β { 0 } β ( β₯ β(πΏβπΊ)) β π΄)) |
11 | 10 | biimpd 228 | . . 3 β’ (π β (( β₯ β(πΏβπΊ)) β { 0 } β ( β₯ β(πΏβπΊ)) β π΄)) |
12 | 11 | necon1bd 2956 | . 2 β’ (π β (Β¬ ( β₯ β(πΏβπΊ)) β π΄ β ( β₯ β(πΏβπΊ)) = { 0 })) |
13 | 12 | orrd 859 | 1 β’ (π β (( β₯ β(πΏβπΊ)) β π΄ β¨ ( β₯ β(πΏβπΊ)) = { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β¨ wo 843 = wceq 1539 β wcel 2104 β wne 2938 {csn 4627 βcfv 6542 0gc0g 17389 LSAtomsclsa 38147 LFnlclfn 38230 LKerclk 38258 HLchlt 38523 LHypclh 39158 DVecHcdvh 40252 ocHcoch 40521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-riotaBAD 38126 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-tpos 8213 df-undef 8260 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-sca 17217 df-vsca 17218 df-0g 17391 df-proset 18252 df-poset 18270 df-plt 18287 df-lub 18303 df-glb 18304 df-join 18305 df-meet 18306 df-p0 18382 df-p1 18383 df-lat 18389 df-clat 18456 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-grp 18858 df-minusg 18859 df-sbg 18860 df-subg 19039 df-cntz 19222 df-lsm 19545 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-dvr 20292 df-drng 20502 df-lmod 20616 df-lss 20687 df-lsp 20727 df-lvec 20858 df-lsatoms 38149 df-lshyp 38150 df-lfl 38231 df-lkr 38259 df-oposet 38349 df-ol 38351 df-oml 38352 df-covers 38439 df-ats 38440 df-atl 38471 df-cvlat 38495 df-hlat 38524 df-llines 38672 df-lplanes 38673 df-lvols 38674 df-lines 38675 df-psubsp 38677 df-pmap 38678 df-padd 38970 df-lhyp 39162 df-laut 39163 df-ldil 39278 df-ltrn 39279 df-trl 39333 df-tgrp 39917 df-tendo 39929 df-edring 39931 df-dveca 40177 df-disoa 40203 df-dvech 40253 df-dib 40313 df-dic 40347 df-dih 40403 df-doch 40522 df-djh 40569 |
This theorem is referenced by: dochkrsm 40632 mapdval2N 40804 mapdrvallem2 40819 |
Copyright terms: Public domain | W3C validator |