Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pexmidlem5N | Structured version Visualization version GIF version |
Description: Lemma for pexmidN 37910. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pexmidlem.l | ⊢ ≤ = (le‘𝐾) |
pexmidlem.j | ⊢ ∨ = (join‘𝐾) |
pexmidlem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pexmidlem.p | ⊢ + = (+𝑃‘𝐾) |
pexmidlem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
pexmidlem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
Ref | Expression |
---|---|
pexmidlem5N | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → (( ⊥ ‘𝑋) ∩ 𝑀) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4277 | . . . 4 ⊢ ((( ⊥ ‘𝑋) ∩ 𝑀) ≠ ∅ ↔ ∃𝑞 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀)) | |
2 | pexmidlem.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
3 | pexmidlem.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
4 | pexmidlem.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | pexmidlem.p | . . . . . . 7 ⊢ + = (+𝑃‘𝐾) | |
6 | pexmidlem.o | . . . . . . 7 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
7 | pexmidlem.m | . . . . . . 7 ⊢ 𝑀 = (𝑋 + {𝑝}) | |
8 | 2, 3, 4, 5, 6, 7 | pexmidlem4N 37914 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) |
9 | 8 | expr 456 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) |
10 | 9 | exlimdv 1937 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (∃𝑞 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) |
11 | 1, 10 | syl5bi 241 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → ((( ⊥ ‘𝑋) ∩ 𝑀) ≠ ∅ → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) |
12 | 11 | necon1bd 2960 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)) → (( ⊥ ‘𝑋) ∩ 𝑀) = ∅)) |
13 | 12 | impr 454 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → (( ⊥ ‘𝑋) ∩ 𝑀) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {csn 4558 ‘cfv 6418 (class class class)co 7255 lecple 16895 joincjn 17944 Atomscatm 37204 HLchlt 37291 +𝑃cpadd 37736 ⊥𝑃cpolN 37843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-undef 8060 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-psubsp 37444 df-pmap 37445 df-padd 37737 df-polarityN 37844 |
This theorem is referenced by: pexmidlem6N 37916 |
Copyright terms: Public domain | W3C validator |