Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem5N Structured version   Visualization version   GIF version

Theorem pexmidlem5N 36050
Description: Lemma for pexmidN 36045. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidlem.l = (le‘𝐾)
pexmidlem.j = (join‘𝐾)
pexmidlem.a 𝐴 = (Atoms‘𝐾)
pexmidlem.p + = (+𝑃𝐾)
pexmidlem.o = (⊥𝑃𝐾)
pexmidlem.m 𝑀 = (𝑋 + {𝑝})
Assertion
Ref Expression
pexmidlem5N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (( 𝑋) ∩ 𝑀) = ∅)

Proof of Theorem pexmidlem5N
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 n0 4161 . . . 4 ((( 𝑋) ∩ 𝑀) ≠ ∅ ↔ ∃𝑞 𝑞 ∈ (( 𝑋) ∩ 𝑀))
2 pexmidlem.l . . . . . . 7 = (le‘𝐾)
3 pexmidlem.j . . . . . . 7 = (join‘𝐾)
4 pexmidlem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
5 pexmidlem.p . . . . . . 7 + = (+𝑃𝐾)
6 pexmidlem.o . . . . . . 7 = (⊥𝑃𝐾)
7 pexmidlem.m . . . . . . 7 𝑀 = (𝑋 + {𝑝})
82, 3, 4, 5, 6, 7pexmidlem4N 36049 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝑝 ∈ (𝑋 + ( 𝑋)))
98expr 450 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ 𝑋 ≠ ∅) → (𝑞 ∈ (( 𝑋) ∩ 𝑀) → 𝑝 ∈ (𝑋 + ( 𝑋))))
109exlimdv 2034 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ 𝑋 ≠ ∅) → (∃𝑞 𝑞 ∈ (( 𝑋) ∩ 𝑀) → 𝑝 ∈ (𝑋 + ( 𝑋))))
111, 10syl5bi 234 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ 𝑋 ≠ ∅) → ((( 𝑋) ∩ 𝑀) ≠ ∅ → 𝑝 ∈ (𝑋 + ( 𝑋))))
1211necon1bd 3018 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ 𝑋 ≠ ∅) → (¬ 𝑝 ∈ (𝑋 + ( 𝑋)) → (( 𝑋) ∩ 𝑀) = ∅))
1312impr 448 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (( 𝑋) ∩ 𝑀) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  w3a 1113   = wceq 1658  wex 1880  wcel 2166  wne 3000  cin 3798  wss 3799  c0 4145  {csn 4398  cfv 6124  (class class class)co 6906  lecple 16313  joincjn 17298  Atomscatm 35339  HLchlt 35426  +𝑃cpadd 35871  𝑃cpolN 35978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-riotaBAD 35029
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-iun 4743  df-iin 4744  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-1st 7429  df-2nd 7430  df-undef 7665  df-proset 17282  df-poset 17300  df-plt 17312  df-lub 17328  df-glb 17329  df-join 17330  df-meet 17331  df-p0 17393  df-p1 17394  df-lat 17400  df-clat 17462  df-oposet 35252  df-ol 35254  df-oml 35255  df-covers 35342  df-ats 35343  df-atl 35374  df-cvlat 35398  df-hlat 35427  df-psubsp 35579  df-pmap 35580  df-padd 35872  df-polarityN 35979
This theorem is referenced by:  pexmidlem6N  36051
  Copyright terms: Public domain W3C validator