Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem5N Structured version   Visualization version   GIF version

Theorem pexmidlem5N 37988
Description: Lemma for pexmidN 37983. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidlem.l = (le‘𝐾)
pexmidlem.j = (join‘𝐾)
pexmidlem.a 𝐴 = (Atoms‘𝐾)
pexmidlem.p + = (+𝑃𝐾)
pexmidlem.o = (⊥𝑃𝐾)
pexmidlem.m 𝑀 = (𝑋 + {𝑝})
Assertion
Ref Expression
pexmidlem5N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (( 𝑋) ∩ 𝑀) = ∅)

Proof of Theorem pexmidlem5N
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 n0 4280 . . . 4 ((( 𝑋) ∩ 𝑀) ≠ ∅ ↔ ∃𝑞 𝑞 ∈ (( 𝑋) ∩ 𝑀))
2 pexmidlem.l . . . . . . 7 = (le‘𝐾)
3 pexmidlem.j . . . . . . 7 = (join‘𝐾)
4 pexmidlem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
5 pexmidlem.p . . . . . . 7 + = (+𝑃𝐾)
6 pexmidlem.o . . . . . . 7 = (⊥𝑃𝐾)
7 pexmidlem.m . . . . . . 7 𝑀 = (𝑋 + {𝑝})
82, 3, 4, 5, 6, 7pexmidlem4N 37987 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝑝 ∈ (𝑋 + ( 𝑋)))
98expr 457 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ 𝑋 ≠ ∅) → (𝑞 ∈ (( 𝑋) ∩ 𝑀) → 𝑝 ∈ (𝑋 + ( 𝑋))))
109exlimdv 1936 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ 𝑋 ≠ ∅) → (∃𝑞 𝑞 ∈ (( 𝑋) ∩ 𝑀) → 𝑝 ∈ (𝑋 + ( 𝑋))))
111, 10syl5bi 241 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ 𝑋 ≠ ∅) → ((( 𝑋) ∩ 𝑀) ≠ ∅ → 𝑝 ∈ (𝑋 + ( 𝑋))))
1211necon1bd 2961 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ 𝑋 ≠ ∅) → (¬ 𝑝 ∈ (𝑋 + ( 𝑋)) → (( 𝑋) ∩ 𝑀) = ∅))
1312impr 455 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (( 𝑋) ∩ 𝑀) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  cin 3886  wss 3887  c0 4256  {csn 4561  cfv 6433  (class class class)co 7275  lecple 16969  joincjn 18029  Atomscatm 37277  HLchlt 37364  +𝑃cpadd 37809  𝑃cpolN 37916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-undef 8089  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-polarityN 37917
This theorem is referenced by:  pexmidlem6N  37989
  Copyright terms: Public domain W3C validator