![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pexmidlem5N | Structured version Visualization version GIF version |
Description: Lemma for pexmidN 39334. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pexmidlem.l | ⊢ ≤ = (le‘𝐾) |
pexmidlem.j | ⊢ ∨ = (join‘𝐾) |
pexmidlem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pexmidlem.p | ⊢ + = (+𝑃‘𝐾) |
pexmidlem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
pexmidlem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
Ref | Expression |
---|---|
pexmidlem5N | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → (( ⊥ ‘𝑋) ∩ 𝑀) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4339 | . . . 4 ⊢ ((( ⊥ ‘𝑋) ∩ 𝑀) ≠ ∅ ↔ ∃𝑞 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀)) | |
2 | pexmidlem.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
3 | pexmidlem.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
4 | pexmidlem.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | pexmidlem.p | . . . . . . 7 ⊢ + = (+𝑃‘𝐾) | |
6 | pexmidlem.o | . . . . . . 7 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
7 | pexmidlem.m | . . . . . . 7 ⊢ 𝑀 = (𝑋 + {𝑝}) | |
8 | 2, 3, 4, 5, 6, 7 | pexmidlem4N 39338 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) |
9 | 8 | expr 456 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) |
10 | 9 | exlimdv 1928 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (∃𝑞 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) |
11 | 1, 10 | biimtrid 241 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → ((( ⊥ ‘𝑋) ∩ 𝑀) ≠ ∅ → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) |
12 | 11 | necon1bd 2950 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)) → (( ⊥ ‘𝑋) ∩ 𝑀) = ∅)) |
13 | 12 | impr 454 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → (( ⊥ ‘𝑋) ∩ 𝑀) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2932 ∩ cin 3940 ⊆ wss 3941 ∅c0 4315 {csn 4621 ‘cfv 6534 (class class class)co 7402 lecple 17205 joincjn 18268 Atomscatm 38627 HLchlt 38714 +𝑃cpadd 39160 ⊥𝑃cpolN 39267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-1st 7969 df-2nd 7970 df-proset 18252 df-poset 18270 df-plt 18287 df-lub 18303 df-glb 18304 df-join 18305 df-meet 18306 df-p0 18382 df-p1 18383 df-lat 18389 df-clat 18456 df-oposet 38540 df-ol 38542 df-oml 38543 df-covers 38630 df-ats 38631 df-atl 38662 df-cvlat 38686 df-hlat 38715 df-psubsp 38868 df-pmap 38869 df-padd 39161 df-polarityN 39268 |
This theorem is referenced by: pexmidlem6N 39340 |
Copyright terms: Public domain | W3C validator |