Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  congabseq Structured version   Visualization version   GIF version

Theorem congabseq 41327
Description: If two integers are congruent, they are either equal or separated by at least the congruence base. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
congabseq (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → ((abs‘(𝐵𝐶)) < 𝐴𝐵 = 𝐶))

Proof of Theorem congabseq
StepHypRef Expression
1 zcn 12511 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
213ad2ant2 1135 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℂ)
32ad2antrr 725 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → 𝐵 ∈ ℂ)
4 zcn 12511 . . . . 5 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
543ad2ant3 1136 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℂ)
65ad2antrr 725 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → 𝐶 ∈ ℂ)
7 zsubcl 12552 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵𝐶) ∈ ℤ)
873adant1 1131 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵𝐶) ∈ ℤ)
98zcnd 12615 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵𝐶) ∈ ℂ)
109abscld 15328 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (abs‘(𝐵𝐶)) ∈ ℝ)
1110adantr 482 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → (abs‘(𝐵𝐶)) ∈ ℝ)
12 nnre 12167 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
13123ad2ant1 1134 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℝ)
1413adantr 482 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → 𝐴 ∈ ℝ)
1511, 14ltnled 11309 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → ((abs‘(𝐵𝐶)) < 𝐴 ↔ ¬ 𝐴 ≤ (abs‘(𝐵𝐶))))
1615biimpa 478 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → ¬ 𝐴 ≤ (abs‘(𝐵𝐶)))
17 nnz 12527 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
18173ad2ant1 1134 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℤ)
1918ad3antrrr 729 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → 𝐴 ∈ ℤ)
208ad3antrrr 729 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → (𝐵𝐶) ∈ ℤ)
21 simpr 486 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → (𝐵𝐶) ≠ 0)
2219, 20, 213jca 1129 . . . . . . 7 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → (𝐴 ∈ ℤ ∧ (𝐵𝐶) ∈ ℤ ∧ (𝐵𝐶) ≠ 0))
23 simpllr 775 . . . . . . 7 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → 𝐴 ∥ (𝐵𝐶))
24 dvdsleabs 16200 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐵𝐶) ∈ ℤ ∧ (𝐵𝐶) ≠ 0) → (𝐴 ∥ (𝐵𝐶) → 𝐴 ≤ (abs‘(𝐵𝐶))))
2522, 23, 24sylc 65 . . . . . 6 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → 𝐴 ≤ (abs‘(𝐵𝐶)))
2625ex 414 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → ((𝐵𝐶) ≠ 0 → 𝐴 ≤ (abs‘(𝐵𝐶))))
2726necon1bd 2962 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → (¬ 𝐴 ≤ (abs‘(𝐵𝐶)) → (𝐵𝐶) = 0))
2816, 27mpd 15 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → (𝐵𝐶) = 0)
293, 6, 28subeq0d 11527 . 2 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → 𝐵 = 𝐶)
30 oveq1 7369 . . . . . 6 (𝐵 = 𝐶 → (𝐵𝐶) = (𝐶𝐶))
3130adantl 483 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (𝐵𝐶) = (𝐶𝐶))
325ad2antrr 725 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → 𝐶 ∈ ℂ)
3332subidd 11507 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (𝐶𝐶) = 0)
3431, 33eqtrd 2777 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (𝐵𝐶) = 0)
3534abs00bd 15183 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (abs‘(𝐵𝐶)) = 0)
36 nngt0 12191 . . . . 5 (𝐴 ∈ ℕ → 0 < 𝐴)
37363ad2ant1 1134 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 < 𝐴)
3837ad2antrr 725 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → 0 < 𝐴)
3935, 38eqbrtrd 5132 . 2 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (abs‘(𝐵𝐶)) < 𝐴)
4029, 39impbida 800 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → ((abs‘(𝐵𝐶)) < 𝐴𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2944   class class class wbr 5110  cfv 6501  (class class class)co 7362  cc 11056  cr 11057  0cc0 11058   < clt 11196  cle 11197  cmin 11392  cn 12160  cz 12506  abscabs 15126  cdvds 16143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-sup 9385  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-rp 12923  df-seq 13914  df-exp 13975  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-dvds 16144
This theorem is referenced by:  acongeq  41336
  Copyright terms: Public domain W3C validator