Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  congabseq Structured version   Visualization version   GIF version

Theorem congabseq 40796
Description: If two integers are congruent, they are either equal or separated by at least the congruence base. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
congabseq (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → ((abs‘(𝐵𝐶)) < 𝐴𝐵 = 𝐶))

Proof of Theorem congabseq
StepHypRef Expression
1 zcn 12324 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
213ad2ant2 1133 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℂ)
32ad2antrr 723 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → 𝐵 ∈ ℂ)
4 zcn 12324 . . . . 5 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
543ad2ant3 1134 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℂ)
65ad2antrr 723 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → 𝐶 ∈ ℂ)
7 zsubcl 12362 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵𝐶) ∈ ℤ)
873adant1 1129 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵𝐶) ∈ ℤ)
98zcnd 12427 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵𝐶) ∈ ℂ)
109abscld 15148 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (abs‘(𝐵𝐶)) ∈ ℝ)
1110adantr 481 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → (abs‘(𝐵𝐶)) ∈ ℝ)
12 nnre 11980 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
13123ad2ant1 1132 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℝ)
1413adantr 481 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → 𝐴 ∈ ℝ)
1511, 14ltnled 11122 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → ((abs‘(𝐵𝐶)) < 𝐴 ↔ ¬ 𝐴 ≤ (abs‘(𝐵𝐶))))
1615biimpa 477 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → ¬ 𝐴 ≤ (abs‘(𝐵𝐶)))
17 nnz 12342 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
18173ad2ant1 1132 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℤ)
1918ad3antrrr 727 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → 𝐴 ∈ ℤ)
208ad3antrrr 727 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → (𝐵𝐶) ∈ ℤ)
21 simpr 485 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → (𝐵𝐶) ≠ 0)
2219, 20, 213jca 1127 . . . . . . 7 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → (𝐴 ∈ ℤ ∧ (𝐵𝐶) ∈ ℤ ∧ (𝐵𝐶) ≠ 0))
23 simpllr 773 . . . . . . 7 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → 𝐴 ∥ (𝐵𝐶))
24 dvdsleabs 16020 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐵𝐶) ∈ ℤ ∧ (𝐵𝐶) ≠ 0) → (𝐴 ∥ (𝐵𝐶) → 𝐴 ≤ (abs‘(𝐵𝐶))))
2522, 23, 24sylc 65 . . . . . 6 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → 𝐴 ≤ (abs‘(𝐵𝐶)))
2625ex 413 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → ((𝐵𝐶) ≠ 0 → 𝐴 ≤ (abs‘(𝐵𝐶))))
2726necon1bd 2961 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → (¬ 𝐴 ≤ (abs‘(𝐵𝐶)) → (𝐵𝐶) = 0))
2816, 27mpd 15 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → (𝐵𝐶) = 0)
293, 6, 28subeq0d 11340 . 2 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → 𝐵 = 𝐶)
30 oveq1 7282 . . . . . 6 (𝐵 = 𝐶 → (𝐵𝐶) = (𝐶𝐶))
3130adantl 482 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (𝐵𝐶) = (𝐶𝐶))
325ad2antrr 723 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → 𝐶 ∈ ℂ)
3332subidd 11320 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (𝐶𝐶) = 0)
3431, 33eqtrd 2778 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (𝐵𝐶) = 0)
3534abs00bd 15003 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (abs‘(𝐵𝐶)) = 0)
36 nngt0 12004 . . . . 5 (𝐴 ∈ ℕ → 0 < 𝐴)
37363ad2ant1 1132 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 < 𝐴)
3837ad2antrr 723 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → 0 < 𝐴)
3935, 38eqbrtrd 5096 . 2 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (abs‘(𝐵𝐶)) < 𝐴)
4029, 39impbida 798 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → ((abs‘(𝐵𝐶)) < 𝐴𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   < clt 11009  cle 11010  cmin 11205  cn 11973  cz 12319  abscabs 14945  cdvds 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964
This theorem is referenced by:  acongeq  40805
  Copyright terms: Public domain W3C validator