Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  congabseq Structured version   Visualization version   GIF version

Theorem congabseq 42998
Description: If two integers are congruent, they are either equal or separated by at least the congruence base. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
congabseq (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → ((abs‘(𝐵𝐶)) < 𝐴𝐵 = 𝐶))

Proof of Theorem congabseq
StepHypRef Expression
1 zcn 12593 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
213ad2ant2 1134 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℂ)
32ad2antrr 726 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → 𝐵 ∈ ℂ)
4 zcn 12593 . . . . 5 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
543ad2ant3 1135 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℂ)
65ad2antrr 726 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → 𝐶 ∈ ℂ)
7 zsubcl 12634 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵𝐶) ∈ ℤ)
873adant1 1130 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵𝐶) ∈ ℤ)
98zcnd 12698 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵𝐶) ∈ ℂ)
109abscld 15455 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (abs‘(𝐵𝐶)) ∈ ℝ)
1110adantr 480 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → (abs‘(𝐵𝐶)) ∈ ℝ)
12 nnre 12247 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
13123ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℝ)
1413adantr 480 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → 𝐴 ∈ ℝ)
1511, 14ltnled 11382 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → ((abs‘(𝐵𝐶)) < 𝐴 ↔ ¬ 𝐴 ≤ (abs‘(𝐵𝐶))))
1615biimpa 476 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → ¬ 𝐴 ≤ (abs‘(𝐵𝐶)))
17 nnz 12609 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
18173ad2ant1 1133 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℤ)
1918ad3antrrr 730 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → 𝐴 ∈ ℤ)
208ad3antrrr 730 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → (𝐵𝐶) ∈ ℤ)
21 simpr 484 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → (𝐵𝐶) ≠ 0)
2219, 20, 213jca 1128 . . . . . . 7 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → (𝐴 ∈ ℤ ∧ (𝐵𝐶) ∈ ℤ ∧ (𝐵𝐶) ≠ 0))
23 simpllr 775 . . . . . . 7 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → 𝐴 ∥ (𝐵𝐶))
24 dvdsleabs 16330 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐵𝐶) ∈ ℤ ∧ (𝐵𝐶) ≠ 0) → (𝐴 ∥ (𝐵𝐶) → 𝐴 ≤ (abs‘(𝐵𝐶))))
2522, 23, 24sylc 65 . . . . . 6 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → 𝐴 ≤ (abs‘(𝐵𝐶)))
2625ex 412 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → ((𝐵𝐶) ≠ 0 → 𝐴 ≤ (abs‘(𝐵𝐶))))
2726necon1bd 2950 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → (¬ 𝐴 ≤ (abs‘(𝐵𝐶)) → (𝐵𝐶) = 0))
2816, 27mpd 15 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → (𝐵𝐶) = 0)
293, 6, 28subeq0d 11602 . 2 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → 𝐵 = 𝐶)
30 oveq1 7412 . . . . . 6 (𝐵 = 𝐶 → (𝐵𝐶) = (𝐶𝐶))
3130adantl 481 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (𝐵𝐶) = (𝐶𝐶))
325ad2antrr 726 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → 𝐶 ∈ ℂ)
3332subidd 11582 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (𝐶𝐶) = 0)
3431, 33eqtrd 2770 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (𝐵𝐶) = 0)
3534abs00bd 15310 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (abs‘(𝐵𝐶)) = 0)
36 nngt0 12271 . . . . 5 (𝐴 ∈ ℕ → 0 < 𝐴)
37363ad2ant1 1133 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 < 𝐴)
3837ad2antrr 726 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → 0 < 𝐴)
3935, 38eqbrtrd 5141 . 2 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (abs‘(𝐵𝐶)) < 𝐴)
4029, 39impbida 800 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → ((abs‘(𝐵𝐶)) < 𝐴𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129   < clt 11269  cle 11270  cmin 11466  cn 12240  cz 12588  abscabs 15253  cdvds 16272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273
This theorem is referenced by:  acongeq  43007
  Copyright terms: Public domain W3C validator