Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  congabseq Structured version   Visualization version   GIF version

Theorem congabseq 41795
Description: If two integers are congruent, they are either equal or separated by at least the congruence base. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
congabseq (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → ((abs‘(𝐵𝐶)) < 𝐴𝐵 = 𝐶))

Proof of Theorem congabseq
StepHypRef Expression
1 zcn 12565 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
213ad2ant2 1134 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℂ)
32ad2antrr 724 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → 𝐵 ∈ ℂ)
4 zcn 12565 . . . . 5 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
543ad2ant3 1135 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℂ)
65ad2antrr 724 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → 𝐶 ∈ ℂ)
7 zsubcl 12606 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵𝐶) ∈ ℤ)
873adant1 1130 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵𝐶) ∈ ℤ)
98zcnd 12669 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵𝐶) ∈ ℂ)
109abscld 15385 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (abs‘(𝐵𝐶)) ∈ ℝ)
1110adantr 481 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → (abs‘(𝐵𝐶)) ∈ ℝ)
12 nnre 12221 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
13123ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℝ)
1413adantr 481 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → 𝐴 ∈ ℝ)
1511, 14ltnled 11363 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → ((abs‘(𝐵𝐶)) < 𝐴 ↔ ¬ 𝐴 ≤ (abs‘(𝐵𝐶))))
1615biimpa 477 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → ¬ 𝐴 ≤ (abs‘(𝐵𝐶)))
17 nnz 12581 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
18173ad2ant1 1133 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℤ)
1918ad3antrrr 728 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → 𝐴 ∈ ℤ)
208ad3antrrr 728 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → (𝐵𝐶) ∈ ℤ)
21 simpr 485 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → (𝐵𝐶) ≠ 0)
2219, 20, 213jca 1128 . . . . . . 7 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → (𝐴 ∈ ℤ ∧ (𝐵𝐶) ∈ ℤ ∧ (𝐵𝐶) ≠ 0))
23 simpllr 774 . . . . . . 7 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → 𝐴 ∥ (𝐵𝐶))
24 dvdsleabs 16256 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐵𝐶) ∈ ℤ ∧ (𝐵𝐶) ≠ 0) → (𝐴 ∥ (𝐵𝐶) → 𝐴 ≤ (abs‘(𝐵𝐶))))
2522, 23, 24sylc 65 . . . . . 6 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → 𝐴 ≤ (abs‘(𝐵𝐶)))
2625ex 413 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → ((𝐵𝐶) ≠ 0 → 𝐴 ≤ (abs‘(𝐵𝐶))))
2726necon1bd 2958 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → (¬ 𝐴 ≤ (abs‘(𝐵𝐶)) → (𝐵𝐶) = 0))
2816, 27mpd 15 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → (𝐵𝐶) = 0)
293, 6, 28subeq0d 11581 . 2 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → 𝐵 = 𝐶)
30 oveq1 7418 . . . . . 6 (𝐵 = 𝐶 → (𝐵𝐶) = (𝐶𝐶))
3130adantl 482 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (𝐵𝐶) = (𝐶𝐶))
325ad2antrr 724 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → 𝐶 ∈ ℂ)
3332subidd 11561 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (𝐶𝐶) = 0)
3431, 33eqtrd 2772 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (𝐵𝐶) = 0)
3534abs00bd 15240 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (abs‘(𝐵𝐶)) = 0)
36 nngt0 12245 . . . . 5 (𝐴 ∈ ℕ → 0 < 𝐴)
37363ad2ant1 1133 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 < 𝐴)
3837ad2antrr 724 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → 0 < 𝐴)
3935, 38eqbrtrd 5170 . 2 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (abs‘(𝐵𝐶)) < 𝐴)
4029, 39impbida 799 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → ((abs‘(𝐵𝐶)) < 𝐴𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940   class class class wbr 5148  cfv 6543  (class class class)co 7411  cc 11110  cr 11111  0cc0 11112   < clt 11250  cle 11251  cmin 11446  cn 12214  cz 12560  abscabs 15183  cdvds 16199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-n0 12475  df-z 12561  df-uz 12825  df-rp 12977  df-seq 13969  df-exp 14030  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-dvds 16200
This theorem is referenced by:  acongeq  41804
  Copyright terms: Public domain W3C validator