Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  congabseq Structured version   Visualization version   GIF version

Theorem congabseq 42537
Description: If two integers are congruent, they are either equal or separated by at least the congruence base. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
congabseq (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → ((abs‘(𝐵𝐶)) < 𝐴𝐵 = 𝐶))

Proof of Theorem congabseq
StepHypRef Expression
1 zcn 12596 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
213ad2ant2 1131 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℂ)
32ad2antrr 724 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → 𝐵 ∈ ℂ)
4 zcn 12596 . . . . 5 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
543ad2ant3 1132 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℂ)
65ad2antrr 724 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → 𝐶 ∈ ℂ)
7 zsubcl 12637 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵𝐶) ∈ ℤ)
873adant1 1127 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵𝐶) ∈ ℤ)
98zcnd 12700 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵𝐶) ∈ ℂ)
109abscld 15419 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (abs‘(𝐵𝐶)) ∈ ℝ)
1110adantr 479 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → (abs‘(𝐵𝐶)) ∈ ℝ)
12 nnre 12252 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
13123ad2ant1 1130 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℝ)
1413adantr 479 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → 𝐴 ∈ ℝ)
1511, 14ltnled 11393 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → ((abs‘(𝐵𝐶)) < 𝐴 ↔ ¬ 𝐴 ≤ (abs‘(𝐵𝐶))))
1615biimpa 475 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → ¬ 𝐴 ≤ (abs‘(𝐵𝐶)))
17 nnz 12612 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
18173ad2ant1 1130 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℤ)
1918ad3antrrr 728 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → 𝐴 ∈ ℤ)
208ad3antrrr 728 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → (𝐵𝐶) ∈ ℤ)
21 simpr 483 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → (𝐵𝐶) ≠ 0)
2219, 20, 213jca 1125 . . . . . . 7 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → (𝐴 ∈ ℤ ∧ (𝐵𝐶) ∈ ℤ ∧ (𝐵𝐶) ≠ 0))
23 simpllr 774 . . . . . . 7 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → 𝐴 ∥ (𝐵𝐶))
24 dvdsleabs 16291 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐵𝐶) ∈ ℤ ∧ (𝐵𝐶) ≠ 0) → (𝐴 ∥ (𝐵𝐶) → 𝐴 ≤ (abs‘(𝐵𝐶))))
2522, 23, 24sylc 65 . . . . . 6 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) ∧ (𝐵𝐶) ≠ 0) → 𝐴 ≤ (abs‘(𝐵𝐶)))
2625ex 411 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → ((𝐵𝐶) ≠ 0 → 𝐴 ≤ (abs‘(𝐵𝐶))))
2726necon1bd 2947 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → (¬ 𝐴 ≤ (abs‘(𝐵𝐶)) → (𝐵𝐶) = 0))
2816, 27mpd 15 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → (𝐵𝐶) = 0)
293, 6, 28subeq0d 11611 . 2 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ (abs‘(𝐵𝐶)) < 𝐴) → 𝐵 = 𝐶)
30 oveq1 7426 . . . . . 6 (𝐵 = 𝐶 → (𝐵𝐶) = (𝐶𝐶))
3130adantl 480 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (𝐵𝐶) = (𝐶𝐶))
325ad2antrr 724 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → 𝐶 ∈ ℂ)
3332subidd 11591 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (𝐶𝐶) = 0)
3431, 33eqtrd 2765 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (𝐵𝐶) = 0)
3534abs00bd 15274 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (abs‘(𝐵𝐶)) = 0)
36 nngt0 12276 . . . . 5 (𝐴 ∈ ℕ → 0 < 𝐴)
37363ad2ant1 1130 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 < 𝐴)
3837ad2antrr 724 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → 0 < 𝐴)
3935, 38eqbrtrd 5171 . 2 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) ∧ 𝐵 = 𝐶) → (abs‘(𝐵𝐶)) < 𝐴)
4029, 39impbida 799 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵𝐶)) → ((abs‘(𝐵𝐶)) < 𝐴𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929   class class class wbr 5149  cfv 6549  (class class class)co 7419  cc 11138  cr 11139  0cc0 11140   < clt 11280  cle 11281  cmin 11476  cn 12245  cz 12591  abscabs 15217  cdvds 16234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9467  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-z 12592  df-uz 12856  df-rp 13010  df-seq 14003  df-exp 14063  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-dvds 16235
This theorem is referenced by:  acongeq  42546
  Copyright terms: Public domain W3C validator