MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul0or Structured version   Visualization version   GIF version

Theorem mul0or 11615
Description: If a product is zero, one of its factors must be zero. Theorem I.11 of [Apostol] p. 18. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
mul0or ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0)))

Proof of Theorem mul0or
StepHypRef Expression
1 simpr 485 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
21adantr 481 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
32mul02d 11173 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → (0 · 𝐵) = 0)
43eqeq2d 2751 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) = (0 · 𝐵) ↔ (𝐴 · 𝐵) = 0))
5 simpl 483 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
65adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℂ)
7 0cnd 10969 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → 0 ∈ ℂ)
8 simpr 485 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
96, 7, 2, 8mulcan2d 11609 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) = (0 · 𝐵) ↔ 𝐴 = 0))
104, 9bitr3d 280 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) = 0 ↔ 𝐴 = 0))
1110biimpd 228 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) = 0 → 𝐴 = 0))
1211impancom 452 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 · 𝐵) = 0) → (𝐵 ≠ 0 → 𝐴 = 0))
1312necon1bd 2963 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 · 𝐵) = 0) → (¬ 𝐴 = 0 → 𝐵 = 0))
1413orrd 860 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 · 𝐵) = 0) → (𝐴 = 0 ∨ 𝐵 = 0))
1514ex 413 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 → (𝐴 = 0 ∨ 𝐵 = 0)))
161mul02d 11173 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (0 · 𝐵) = 0)
17 oveq1 7278 . . . . 5 (𝐴 = 0 → (𝐴 · 𝐵) = (0 · 𝐵))
1817eqeq1d 2742 . . . 4 (𝐴 = 0 → ((𝐴 · 𝐵) = 0 ↔ (0 · 𝐵) = 0))
1916, 18syl5ibrcom 246 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 0 → (𝐴 · 𝐵) = 0))
205mul01d 11174 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 0) = 0)
21 oveq2 7279 . . . . 5 (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0))
2221eqeq1d 2742 . . . 4 (𝐵 = 0 → ((𝐴 · 𝐵) = 0 ↔ (𝐴 · 0) = 0))
2320, 22syl5ibrcom 246 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 = 0 → (𝐴 · 𝐵) = 0))
2419, 23jaod 856 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 = 0 ∨ 𝐵 = 0) → (𝐴 · 𝐵) = 0))
2515, 24impbid 211 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1542  wcel 2110  wne 2945  (class class class)co 7271  cc 10870  0cc0 10872   · cmul 10877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208
This theorem is referenced by:  mulne0b  11616  msq0i  11622  mul0ori  11623  msq0d  11624  mul0ord  11625  coseq1  25679  efrlim  26117
  Copyright terms: Public domain W3C validator