| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul0or | Structured version Visualization version GIF version | ||
| Description: If a product is zero, one of its factors must be zero. Theorem I.11 of [Apostol] p. 18. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| mul0or | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 2 | 1 | adantr 480 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ) |
| 3 | 2 | mul02d 11372 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → (0 · 𝐵) = 0) |
| 4 | 3 | eqeq2d 2740 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) = (0 · 𝐵) ↔ (𝐴 · 𝐵) = 0)) |
| 5 | simpl 482 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℂ) |
| 7 | 0cnd 11167 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → 0 ∈ ℂ) | |
| 8 | simpr 484 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0) | |
| 9 | 6, 7, 2, 8 | mulcan2d 11812 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) = (0 · 𝐵) ↔ 𝐴 = 0)) |
| 10 | 4, 9 | bitr3d 281 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) = 0 ↔ 𝐴 = 0)) |
| 11 | 10 | biimpd 229 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) = 0 → 𝐴 = 0)) |
| 12 | 11 | impancom 451 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 · 𝐵) = 0) → (𝐵 ≠ 0 → 𝐴 = 0)) |
| 13 | 12 | necon1bd 2943 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 · 𝐵) = 0) → (¬ 𝐴 = 0 → 𝐵 = 0)) |
| 14 | 13 | orrd 863 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 · 𝐵) = 0) → (𝐴 = 0 ∨ 𝐵 = 0)) |
| 15 | 14 | ex 412 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 → (𝐴 = 0 ∨ 𝐵 = 0))) |
| 16 | 1 | mul02d 11372 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (0 · 𝐵) = 0) |
| 17 | oveq1 7394 | . . . . 5 ⊢ (𝐴 = 0 → (𝐴 · 𝐵) = (0 · 𝐵)) | |
| 18 | 17 | eqeq1d 2731 | . . . 4 ⊢ (𝐴 = 0 → ((𝐴 · 𝐵) = 0 ↔ (0 · 𝐵) = 0)) |
| 19 | 16, 18 | syl5ibrcom 247 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 0 → (𝐴 · 𝐵) = 0)) |
| 20 | 5 | mul01d 11373 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 0) = 0) |
| 21 | oveq2 7395 | . . . . 5 ⊢ (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0)) | |
| 22 | 21 | eqeq1d 2731 | . . . 4 ⊢ (𝐵 = 0 → ((𝐴 · 𝐵) = 0 ↔ (𝐴 · 0) = 0)) |
| 23 | 20, 22 | syl5ibrcom 247 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 = 0 → (𝐴 · 𝐵) = 0)) |
| 24 | 19, 23 | jaod 859 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 = 0 ∨ 𝐵 = 0) → (𝐴 · 𝐵) = 0)) |
| 25 | 15, 24 | impbid 212 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7387 ℂcc 11066 0cc0 11068 · cmul 11073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 |
| This theorem is referenced by: mulne0b 11819 mul0ori 11825 mul0ord 11826 coseq1 26434 efrlim 26879 efrlimOLD 26880 zringidom 33522 |
| Copyright terms: Public domain | W3C validator |