![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mul0or | Structured version Visualization version GIF version |
Description: If a product is zero, one of its factors must be zero. Theorem I.11 of [Apostol] p. 18. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mul0or | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
2 | 1 | adantr 480 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ) |
3 | 2 | mul02d 11488 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → (0 · 𝐵) = 0) |
4 | 3 | eqeq2d 2751 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) = (0 · 𝐵) ↔ (𝐴 · 𝐵) = 0)) |
5 | simpl 482 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℂ) |
7 | 0cnd 11283 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → 0 ∈ ℂ) | |
8 | simpr 484 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0) | |
9 | 6, 7, 2, 8 | mulcan2d 11924 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) = (0 · 𝐵) ↔ 𝐴 = 0)) |
10 | 4, 9 | bitr3d 281 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) = 0 ↔ 𝐴 = 0)) |
11 | 10 | biimpd 229 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) = 0 → 𝐴 = 0)) |
12 | 11 | impancom 451 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 · 𝐵) = 0) → (𝐵 ≠ 0 → 𝐴 = 0)) |
13 | 12 | necon1bd 2964 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 · 𝐵) = 0) → (¬ 𝐴 = 0 → 𝐵 = 0)) |
14 | 13 | orrd 862 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 · 𝐵) = 0) → (𝐴 = 0 ∨ 𝐵 = 0)) |
15 | 14 | ex 412 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 → (𝐴 = 0 ∨ 𝐵 = 0))) |
16 | 1 | mul02d 11488 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (0 · 𝐵) = 0) |
17 | oveq1 7455 | . . . . 5 ⊢ (𝐴 = 0 → (𝐴 · 𝐵) = (0 · 𝐵)) | |
18 | 17 | eqeq1d 2742 | . . . 4 ⊢ (𝐴 = 0 → ((𝐴 · 𝐵) = 0 ↔ (0 · 𝐵) = 0)) |
19 | 16, 18 | syl5ibrcom 247 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 0 → (𝐴 · 𝐵) = 0)) |
20 | 5 | mul01d 11489 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 0) = 0) |
21 | oveq2 7456 | . . . . 5 ⊢ (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0)) | |
22 | 21 | eqeq1d 2742 | . . . 4 ⊢ (𝐵 = 0 → ((𝐴 · 𝐵) = 0 ↔ (𝐴 · 0) = 0)) |
23 | 20, 22 | syl5ibrcom 247 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 = 0 → (𝐴 · 𝐵) = 0)) |
24 | 19, 23 | jaod 858 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 = 0 ∨ 𝐵 = 0) → (𝐴 · 𝐵) = 0)) |
25 | 15, 24 | impbid 212 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 (class class class)co 7448 ℂcc 11182 0cc0 11184 · cmul 11189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 |
This theorem is referenced by: mulne0b 11931 msq0i 11937 mul0ori 11938 msq0d 11939 mul0ord 11940 coseq1 26585 efrlim 27030 efrlimOLD 27031 zringidom 33544 |
Copyright terms: Public domain | W3C validator |