Proof of Theorem coeid3
Step | Hyp | Ref
| Expression |
1 | | dgrub.1 |
. . . 4
⊢ 𝐴 = (coeff‘𝐹) |
2 | | dgrub.2 |
. . . 4
⊢ 𝑁 = (deg‘𝐹) |
3 | 1, 2 | coeid2 24940 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑋 ∈ ℂ) → (𝐹‘𝑋) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑋↑𝑘))) |
4 | 3 | 3adant2 1128 |
. 2
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) → (𝐹‘𝑋) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑋↑𝑘))) |
5 | | fzss2 13001 |
. . . 4
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (0...𝑁) ⊆ (0...𝑀)) |
6 | 5 | 3ad2ant2 1131 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) → (0...𝑁) ⊆ (0...𝑀)) |
7 | | elfznn0 13054 |
. . . 4
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
8 | 1 | coef3 24933 |
. . . . . . 7
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
9 | 8 | 3ad2ant1 1130 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) → 𝐴:ℕ0⟶ℂ) |
10 | 9 | ffvelrnda 6847 |
. . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
11 | | expcl 13502 |
. . . . . 6
⊢ ((𝑋 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑋↑𝑘) ∈
ℂ) |
12 | 11 | 3ad2antl3 1184 |
. . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑋↑𝑘) ∈ ℂ) |
13 | 10, 12 | mulcld 10704 |
. . . 4
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑋↑𝑘)) ∈ ℂ) |
14 | 7, 13 | sylan2 595 |
. . 3
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴‘𝑘) · (𝑋↑𝑘)) ∈ ℂ) |
15 | | eldifn 4035 |
. . . . . . 7
⊢ (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → ¬ 𝑘 ∈ (0...𝑁)) |
16 | 15 | adantl 485 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ¬ 𝑘 ∈ (0...𝑁)) |
17 | | simpl1 1188 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝐹 ∈ (Poly‘𝑆)) |
18 | | eldifi 4034 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ (0...𝑀)) |
19 | | elfzuz 12957 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ∈
(ℤ≥‘0)) |
20 | 18, 19 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈
(ℤ≥‘0)) |
21 | 20 | adantl 485 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝑘 ∈
(ℤ≥‘0)) |
22 | | nn0uz 12325 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
23 | 21, 22 | eleqtrrdi 2863 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝑘 ∈ ℕ0) |
24 | 1, 2 | dgrub 24935 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴‘𝑘) ≠ 0) → 𝑘 ≤ 𝑁) |
25 | 24 | 3expia 1118 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
26 | 17, 23, 25 | syl2anc 587 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
27 | | simpl2 1189 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝑀 ∈ (ℤ≥‘𝑁)) |
28 | | eluzel2 12292 |
. . . . . . . . . 10
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → 𝑁 ∈ ℤ) |
29 | 27, 28 | syl 17 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝑁 ∈ ℤ) |
30 | | elfz5 12953 |
. . . . . . . . 9
⊢ ((𝑘 ∈
(ℤ≥‘0) ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ≤ 𝑁)) |
31 | 21, 29, 30 | syl2anc 587 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ≤ 𝑁)) |
32 | 26, 31 | sylibrd 262 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ∈ (0...𝑁))) |
33 | 32 | necon1bd 2969 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (¬ 𝑘 ∈ (0...𝑁) → (𝐴‘𝑘) = 0)) |
34 | 16, 33 | mpd 15 |
. . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝐴‘𝑘) = 0) |
35 | 34 | oveq1d 7170 |
. . . 4
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴‘𝑘) · (𝑋↑𝑘)) = (0 · (𝑋↑𝑘))) |
36 | | elfznn0 13054 |
. . . . . . 7
⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0) |
37 | 18, 36 | syl 17 |
. . . . . 6
⊢ (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ ℕ0) |
38 | 37, 12 | sylan2 595 |
. . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝑋↑𝑘) ∈ ℂ) |
39 | 38 | mul02d 10881 |
. . . 4
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (0 · (𝑋↑𝑘)) = 0) |
40 | 35, 39 | eqtrd 2793 |
. . 3
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴‘𝑘) · (𝑋↑𝑘)) = 0) |
41 | | fzfid 13395 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) → (0...𝑀) ∈ Fin) |
42 | 6, 14, 40, 41 | fsumss 15135 |
. 2
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑋↑𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑋↑𝑘))) |
43 | 4, 42 | eqtrd 2793 |
1
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) → (𝐹‘𝑋) = Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑋↑𝑘))) |