MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeid3 Structured version   Visualization version   GIF version

Theorem coeid3 25306
Description: Reconstruct a polynomial as an explicit sum of the coefficient function up to at least the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
dgrub.1 𝐴 = (coeff‘𝐹)
dgrub.2 𝑁 = (deg‘𝐹)
Assertion
Ref Expression
coeid3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → (𝐹𝑋) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑋𝑘)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑆,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑋

Proof of Theorem coeid3
StepHypRef Expression
1 dgrub.1 . . . 4 𝐴 = (coeff‘𝐹)
2 dgrub.2 . . . 4 𝑁 = (deg‘𝐹)
31, 2coeid2 25305 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑋 ∈ ℂ) → (𝐹𝑋) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑋𝑘)))
433adant2 1129 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → (𝐹𝑋) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑋𝑘)))
5 fzss2 13225 . . . 4 (𝑀 ∈ (ℤ𝑁) → (0...𝑁) ⊆ (0...𝑀))
653ad2ant2 1132 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → (0...𝑁) ⊆ (0...𝑀))
7 elfznn0 13278 . . . 4 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
81coef3 25298 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
983ad2ant1 1131 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
109ffvelrnda 6943 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
11 expcl 13728 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑋𝑘) ∈ ℂ)
12113ad2antl3 1185 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑋𝑘) ∈ ℂ)
1310, 12mulcld 10926 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑋𝑘)) ∈ ℂ)
147, 13sylan2 592 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · (𝑋𝑘)) ∈ ℂ)
15 eldifn 4058 . . . . . . 7 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → ¬ 𝑘 ∈ (0...𝑁))
1615adantl 481 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ¬ 𝑘 ∈ (0...𝑁))
17 simpl1 1189 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝐹 ∈ (Poly‘𝑆))
18 eldifi 4057 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ (0...𝑀))
19 elfzuz 13181 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ (ℤ‘0))
2018, 19syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ (ℤ‘0))
2120adantl 481 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝑘 ∈ (ℤ‘0))
22 nn0uz 12549 . . . . . . . . . 10 0 = (ℤ‘0)
2321, 22eleqtrrdi 2850 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝑘 ∈ ℕ0)
241, 2dgrub 25300 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0) → 𝑘𝑁)
25243expia 1119 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
2617, 23, 25syl2anc 583 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
27 simpl2 1190 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝑀 ∈ (ℤ𝑁))
28 eluzel2 12516 . . . . . . . . . 10 (𝑀 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
2927, 28syl 17 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝑁 ∈ ℤ)
30 elfz5 13177 . . . . . . . . 9 ((𝑘 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
3121, 29, 30syl2anc 583 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
3226, 31sylibrd 258 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) ≠ 0 → 𝑘 ∈ (0...𝑁)))
3332necon1bd 2960 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (¬ 𝑘 ∈ (0...𝑁) → (𝐴𝑘) = 0))
3416, 33mpd 15 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝐴𝑘) = 0)
3534oveq1d 7270 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) · (𝑋𝑘)) = (0 · (𝑋𝑘)))
36 elfznn0 13278 . . . . . . 7 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0)
3718, 36syl 17 . . . . . 6 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ ℕ0)
3837, 12sylan2 592 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝑋𝑘) ∈ ℂ)
3938mul02d 11103 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (0 · (𝑋𝑘)) = 0)
4035, 39eqtrd 2778 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) · (𝑋𝑘)) = 0)
41 fzfid 13621 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → (0...𝑀) ∈ Fin)
426, 14, 40, 41fsumss 15365 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑋𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑋𝑘)))
434, 42eqtrd 2778 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → (𝐹𝑋) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑋𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cdif 3880  wss 3883   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802   · cmul 10807  cle 10941  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  cexp 13710  Σcsu 15325  Polycply 25250  coeffccoe 25252  degcdgr 25253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-0p 24739  df-ply 25254  df-coe 25256  df-dgr 25257
This theorem is referenced by:  dvply2g  25350  aannenlem1  25393
  Copyright terms: Public domain W3C validator