MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeid3 Structured version   Visualization version   GIF version

Theorem coeid3 24745
Description: Reconstruct a polynomial as an explicit sum of the coefficient function up to at least the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
dgrub.1 𝐴 = (coeff‘𝐹)
dgrub.2 𝑁 = (deg‘𝐹)
Assertion
Ref Expression
coeid3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → (𝐹𝑋) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑋𝑘)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑆,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑋

Proof of Theorem coeid3
StepHypRef Expression
1 dgrub.1 . . . 4 𝐴 = (coeff‘𝐹)
2 dgrub.2 . . . 4 𝑁 = (deg‘𝐹)
31, 2coeid2 24744 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑋 ∈ ℂ) → (𝐹𝑋) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑋𝑘)))
433adant2 1125 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → (𝐹𝑋) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑋𝑘)))
5 fzss2 12937 . . . 4 (𝑀 ∈ (ℤ𝑁) → (0...𝑁) ⊆ (0...𝑀))
653ad2ant2 1128 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → (0...𝑁) ⊆ (0...𝑀))
7 elfznn0 12990 . . . 4 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
81coef3 24737 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
983ad2ant1 1127 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
109ffvelrnda 6847 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
11 expcl 13437 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑋𝑘) ∈ ℂ)
12113ad2antl3 1181 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑋𝑘) ∈ ℂ)
1310, 12mulcld 10650 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑋𝑘)) ∈ ℂ)
147, 13sylan2 592 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · (𝑋𝑘)) ∈ ℂ)
15 eldifn 4108 . . . . . . 7 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → ¬ 𝑘 ∈ (0...𝑁))
1615adantl 482 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ¬ 𝑘 ∈ (0...𝑁))
17 simpl1 1185 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝐹 ∈ (Poly‘𝑆))
18 eldifi 4107 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ (0...𝑀))
19 elfzuz 12894 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ (ℤ‘0))
2018, 19syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ (ℤ‘0))
2120adantl 482 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝑘 ∈ (ℤ‘0))
22 nn0uz 12269 . . . . . . . . . 10 0 = (ℤ‘0)
2321, 22syl6eleqr 2929 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝑘 ∈ ℕ0)
241, 2dgrub 24739 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0) → 𝑘𝑁)
25243expia 1115 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
2617, 23, 25syl2anc 584 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
27 simpl2 1186 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝑀 ∈ (ℤ𝑁))
28 eluzel2 12237 . . . . . . . . . 10 (𝑀 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
2927, 28syl 17 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝑁 ∈ ℤ)
30 elfz5 12890 . . . . . . . . 9 ((𝑘 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
3121, 29, 30syl2anc 584 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
3226, 31sylibrd 260 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) ≠ 0 → 𝑘 ∈ (0...𝑁)))
3332necon1bd 3039 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (¬ 𝑘 ∈ (0...𝑁) → (𝐴𝑘) = 0))
3416, 33mpd 15 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝐴𝑘) = 0)
3534oveq1d 7163 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) · (𝑋𝑘)) = (0 · (𝑋𝑘)))
36 elfznn0 12990 . . . . . . 7 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0)
3718, 36syl 17 . . . . . 6 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ ℕ0)
3837, 12sylan2 592 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝑋𝑘) ∈ ℂ)
3938mul02d 10827 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (0 · (𝑋𝑘)) = 0)
4035, 39eqtrd 2861 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) · (𝑋𝑘)) = 0)
41 fzfid 13331 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → (0...𝑀) ∈ Fin)
426, 14, 40, 41fsumss 15072 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑋𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑋𝑘)))
434, 42eqtrd 2861 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → (𝐹𝑋) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑋𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3021  cdif 3937  wss 3940   class class class wbr 5063  wf 6348  cfv 6352  (class class class)co 7148  cc 10524  0cc0 10526   · cmul 10531  cle 10665  0cn0 11886  cz 11970  cuz 12232  ...cfz 12882  cexp 13419  Σcsu 15032  Polycply 24689  coeffccoe 24691  degcdgr 24692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7399  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-inf 8896  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-z 11971  df-uz 12233  df-rp 12380  df-fz 12883  df-fzo 13024  df-fl 13152  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-clim 14835  df-rlim 14836  df-sum 15033  df-0p 24186  df-ply 24693  df-coe 24695  df-dgr 24696
This theorem is referenced by:  dvply2g  24789  aannenlem1  24832
  Copyright terms: Public domain W3C validator