MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeid3 Structured version   Visualization version   GIF version

Theorem coeid3 25638
Description: Reconstruct a polynomial as an explicit sum of the coefficient function up to at least the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
dgrub.1 𝐴 = (coeff‘𝐹)
dgrub.2 𝑁 = (deg‘𝐹)
Assertion
Ref Expression
coeid3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → (𝐹𝑋) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑋𝑘)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑆,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑋

Proof of Theorem coeid3
StepHypRef Expression
1 dgrub.1 . . . 4 𝐴 = (coeff‘𝐹)
2 dgrub.2 . . . 4 𝑁 = (deg‘𝐹)
31, 2coeid2 25637 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑋 ∈ ℂ) → (𝐹𝑋) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑋𝑘)))
433adant2 1131 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → (𝐹𝑋) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑋𝑘)))
5 fzss2 13491 . . . 4 (𝑀 ∈ (ℤ𝑁) → (0...𝑁) ⊆ (0...𝑀))
653ad2ant2 1134 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → (0...𝑁) ⊆ (0...𝑀))
7 elfznn0 13544 . . . 4 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
81coef3 25630 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
983ad2ant1 1133 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
109ffvelcdmda 7040 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
11 expcl 13995 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑋𝑘) ∈ ℂ)
12113ad2antl3 1187 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑋𝑘) ∈ ℂ)
1310, 12mulcld 11184 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑋𝑘)) ∈ ℂ)
147, 13sylan2 593 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · (𝑋𝑘)) ∈ ℂ)
15 eldifn 4092 . . . . . . 7 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → ¬ 𝑘 ∈ (0...𝑁))
1615adantl 482 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ¬ 𝑘 ∈ (0...𝑁))
17 simpl1 1191 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝐹 ∈ (Poly‘𝑆))
18 eldifi 4091 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ (0...𝑀))
19 elfzuz 13447 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ (ℤ‘0))
2018, 19syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ (ℤ‘0))
2120adantl 482 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝑘 ∈ (ℤ‘0))
22 nn0uz 12814 . . . . . . . . . 10 0 = (ℤ‘0)
2321, 22eleqtrrdi 2843 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝑘 ∈ ℕ0)
241, 2dgrub 25632 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0) → 𝑘𝑁)
25243expia 1121 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
2617, 23, 25syl2anc 584 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
27 simpl2 1192 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝑀 ∈ (ℤ𝑁))
28 eluzel2 12777 . . . . . . . . . 10 (𝑀 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
2927, 28syl 17 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝑁 ∈ ℤ)
30 elfz5 13443 . . . . . . . . 9 ((𝑘 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
3121, 29, 30syl2anc 584 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
3226, 31sylibrd 258 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) ≠ 0 → 𝑘 ∈ (0...𝑁)))
3332necon1bd 2957 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (¬ 𝑘 ∈ (0...𝑁) → (𝐴𝑘) = 0))
3416, 33mpd 15 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝐴𝑘) = 0)
3534oveq1d 7377 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) · (𝑋𝑘)) = (0 · (𝑋𝑘)))
36 elfznn0 13544 . . . . . . 7 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0)
3718, 36syl 17 . . . . . 6 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ ℕ0)
3837, 12sylan2 593 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝑋𝑘) ∈ ℂ)
3938mul02d 11362 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (0 · (𝑋𝑘)) = 0)
4035, 39eqtrd 2771 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) · (𝑋𝑘)) = 0)
41 fzfid 13888 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → (0...𝑀) ∈ Fin)
426, 14, 40, 41fsumss 15621 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑋𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑋𝑘)))
434, 42eqtrd 2771 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → (𝐹𝑋) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑋𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939  cdif 3910  wss 3913   class class class wbr 5110  wf 6497  cfv 6501  (class class class)co 7362  cc 11058  0cc0 11060   · cmul 11065  cle 11199  0cn0 12422  cz 12508  cuz 12772  ...cfz 13434  cexp 13977  Σcsu 15582  Polycply 25582  coeffccoe 25584  degcdgr 25585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9586  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-map 8774  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9387  df-inf 9388  df-oi 9455  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-n0 12423  df-z 12509  df-uz 12773  df-rp 12925  df-fz 13435  df-fzo 13578  df-fl 13707  df-seq 13917  df-exp 13978  df-hash 14241  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-clim 15382  df-rlim 15383  df-sum 15583  df-0p 25071  df-ply 25586  df-coe 25588  df-dgr 25589
This theorem is referenced by:  dvply2g  25682  aannenlem1  25725
  Copyright terms: Public domain W3C validator