| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrsum | Structured version Visualization version GIF version | ||
| Description: An orthogonality relation for Dirichlet characters: the sum of all the values of a Dirichlet character 𝑋 is 0 if 𝑋 is non-principal and ϕ(𝑛) otherwise. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.) |
| Ref | Expression |
|---|---|
| dchrsum.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrsum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| dchrsum.d | ⊢ 𝐷 = (Base‘𝐺) |
| dchrsum.1 | ⊢ 1 = (0g‘𝐺) |
| dchrsum.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| dchrsum.b | ⊢ 𝐵 = (Base‘𝑍) |
| Ref | Expression |
|---|---|
| dchrsum | ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 (𝑋‘𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dchrsum.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑍) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (Unit‘𝑍) = (Unit‘𝑍) | |
| 3 | 1, 2 | unitss 20300 | . . . 4 ⊢ (Unit‘𝑍) ⊆ 𝐵 |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (Unit‘𝑍) ⊆ 𝐵) |
| 5 | dchrsum.g | . . . . 5 ⊢ 𝐺 = (DChr‘𝑁) | |
| 6 | dchrsum.z | . . . . 5 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 7 | dchrsum.d | . . . . 5 ⊢ 𝐷 = (Base‘𝐺) | |
| 8 | dchrsum.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 9 | 5, 6, 7, 1, 8 | dchrf 27186 | . . . 4 ⊢ (𝜑 → 𝑋:𝐵⟶ℂ) |
| 10 | 3 | sseli 3925 | . . . 4 ⊢ (𝑎 ∈ (Unit‘𝑍) → 𝑎 ∈ 𝐵) |
| 11 | ffvelcdm 7020 | . . . 4 ⊢ ((𝑋:𝐵⟶ℂ ∧ 𝑎 ∈ 𝐵) → (𝑋‘𝑎) ∈ ℂ) | |
| 12 | 9, 10, 11 | syl2an 596 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (Unit‘𝑍)) → (𝑋‘𝑎) ∈ ℂ) |
| 13 | eldif 3907 | . . . 4 ⊢ (𝑎 ∈ (𝐵 ∖ (Unit‘𝑍)) ↔ (𝑎 ∈ 𝐵 ∧ ¬ 𝑎 ∈ (Unit‘𝑍))) | |
| 14 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋 ∈ 𝐷) |
| 15 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) | |
| 16 | 5, 6, 7, 1, 2, 14, 15 | dchrn0 27194 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋‘𝑎) ≠ 0 ↔ 𝑎 ∈ (Unit‘𝑍))) |
| 17 | 16 | biimpd 229 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋‘𝑎) ≠ 0 → 𝑎 ∈ (Unit‘𝑍))) |
| 18 | 17 | necon1bd 2946 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (¬ 𝑎 ∈ (Unit‘𝑍) → (𝑋‘𝑎) = 0)) |
| 19 | 18 | impr 454 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ ¬ 𝑎 ∈ (Unit‘𝑍))) → (𝑋‘𝑎) = 0) |
| 20 | 13, 19 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐵 ∖ (Unit‘𝑍))) → (𝑋‘𝑎) = 0) |
| 21 | 5, 7 | dchrrcl 27184 | . . . 4 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
| 22 | 6, 1 | znfi 21502 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝐵 ∈ Fin) |
| 23 | 8, 21, 22 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) |
| 24 | 4, 12, 20, 23 | fsumss 15638 | . 2 ⊢ (𝜑 → Σ𝑎 ∈ (Unit‘𝑍)(𝑋‘𝑎) = Σ𝑎 ∈ 𝐵 (𝑋‘𝑎)) |
| 25 | dchrsum.1 | . . 3 ⊢ 1 = (0g‘𝐺) | |
| 26 | 5, 6, 7, 25, 8, 2 | dchrsum2 27212 | . 2 ⊢ (𝜑 → Σ𝑎 ∈ (Unit‘𝑍)(𝑋‘𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)) |
| 27 | 24, 26 | eqtr3d 2768 | 1 ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 (𝑋‘𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3894 ⊆ wss 3897 ifcif 4474 ⟶wf 6483 ‘cfv 6487 Fincfn 8875 ℂcc 11010 0cc0 11012 ℕcn 12131 Σcsu 15599 ϕcphi 16681 Basecbs 17126 0gc0g 17349 Unitcui 20279 ℤ/nℤczn 21445 DChrcdchr 27176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 ax-addf 11091 ax-mulf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-er 8628 df-ec 8630 df-qs 8634 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-xnn0 12461 df-z 12475 df-dec 12595 df-uz 12739 df-rp 12897 df-fz 13414 df-fzo 13561 df-fl 13702 df-mod 13780 df-seq 13915 df-exp 13975 df-hash 14244 df-cj 15012 df-re 15013 df-im 15014 df-sqrt 15148 df-abs 15149 df-clim 15401 df-sum 15600 df-dvds 16170 df-gcd 16412 df-phi 16683 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-starv 17182 df-sca 17183 df-vsca 17184 df-ip 17185 df-tset 17186 df-ple 17187 df-ds 17189 df-unif 17190 df-0g 17351 df-imas 17418 df-qus 17419 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-mhm 18697 df-grp 18855 df-minusg 18856 df-sbg 18857 df-mulg 18987 df-subg 19042 df-nsg 19043 df-eqg 19044 df-ghm 19131 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-ring 20159 df-cring 20160 df-oppr 20261 df-dvdsr 20281 df-unit 20282 df-invr 20312 df-rhm 20396 df-subrng 20467 df-subrg 20491 df-lmod 20801 df-lss 20871 df-lsp 20911 df-sra 21113 df-rgmod 21114 df-lidl 21151 df-rsp 21152 df-2idl 21193 df-cnfld 21298 df-zring 21390 df-zrh 21446 df-zn 21449 df-dchr 27177 |
| This theorem is referenced by: dchrhash 27215 dchr2sum 27217 dchrisumlem1 27433 |
| Copyright terms: Public domain | W3C validator |