MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrsum Structured version   Visualization version   GIF version

Theorem dchrsum 27196
Description: An orthogonality relation for Dirichlet characters: the sum of all the values of a Dirichlet character 𝑋 is 0 if 𝑋 is non-principal and ϕ(𝑛) otherwise. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrsum.g 𝐺 = (DChr‘𝑁)
dchrsum.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrsum.d 𝐷 = (Base‘𝐺)
dchrsum.1 1 = (0g𝐺)
dchrsum.x (𝜑𝑋𝐷)
dchrsum.b 𝐵 = (Base‘𝑍)
Assertion
Ref Expression
dchrsum (𝜑 → Σ𝑎𝐵 (𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0))
Distinct variable groups:   1 ,𝑎   𝐵,𝑎   𝜑,𝑎   𝑋,𝑎   𝑍,𝑎
Allowed substitution hints:   𝐷(𝑎)   𝐺(𝑎)   𝑁(𝑎)

Proof of Theorem dchrsum
StepHypRef Expression
1 dchrsum.b . . . . 5 𝐵 = (Base‘𝑍)
2 eqid 2729 . . . . 5 (Unit‘𝑍) = (Unit‘𝑍)
31, 2unitss 20279 . . . 4 (Unit‘𝑍) ⊆ 𝐵
43a1i 11 . . 3 (𝜑 → (Unit‘𝑍) ⊆ 𝐵)
5 dchrsum.g . . . . 5 𝐺 = (DChr‘𝑁)
6 dchrsum.z . . . . 5 𝑍 = (ℤ/nℤ‘𝑁)
7 dchrsum.d . . . . 5 𝐷 = (Base‘𝐺)
8 dchrsum.x . . . . 5 (𝜑𝑋𝐷)
95, 6, 7, 1, 8dchrf 27169 . . . 4 (𝜑𝑋:𝐵⟶ℂ)
103sseli 3933 . . . 4 (𝑎 ∈ (Unit‘𝑍) → 𝑎𝐵)
11 ffvelcdm 7019 . . . 4 ((𝑋:𝐵⟶ℂ ∧ 𝑎𝐵) → (𝑋𝑎) ∈ ℂ)
129, 10, 11syl2an 596 . . 3 ((𝜑𝑎 ∈ (Unit‘𝑍)) → (𝑋𝑎) ∈ ℂ)
13 eldif 3915 . . . 4 (𝑎 ∈ (𝐵 ∖ (Unit‘𝑍)) ↔ (𝑎𝐵 ∧ ¬ 𝑎 ∈ (Unit‘𝑍)))
148adantr 480 . . . . . . . 8 ((𝜑𝑎𝐵) → 𝑋𝐷)
15 simpr 484 . . . . . . . 8 ((𝜑𝑎𝐵) → 𝑎𝐵)
165, 6, 7, 1, 2, 14, 15dchrn0 27177 . . . . . . 7 ((𝜑𝑎𝐵) → ((𝑋𝑎) ≠ 0 ↔ 𝑎 ∈ (Unit‘𝑍)))
1716biimpd 229 . . . . . 6 ((𝜑𝑎𝐵) → ((𝑋𝑎) ≠ 0 → 𝑎 ∈ (Unit‘𝑍)))
1817necon1bd 2943 . . . . 5 ((𝜑𝑎𝐵) → (¬ 𝑎 ∈ (Unit‘𝑍) → (𝑋𝑎) = 0))
1918impr 454 . . . 4 ((𝜑 ∧ (𝑎𝐵 ∧ ¬ 𝑎 ∈ (Unit‘𝑍))) → (𝑋𝑎) = 0)
2013, 19sylan2b 594 . . 3 ((𝜑𝑎 ∈ (𝐵 ∖ (Unit‘𝑍))) → (𝑋𝑎) = 0)
215, 7dchrrcl 27167 . . . 4 (𝑋𝐷𝑁 ∈ ℕ)
226, 1znfi 21484 . . . 4 (𝑁 ∈ ℕ → 𝐵 ∈ Fin)
238, 21, 223syl 18 . . 3 (𝜑𝐵 ∈ Fin)
244, 12, 20, 23fsumss 15650 . 2 (𝜑 → Σ𝑎 ∈ (Unit‘𝑍)(𝑋𝑎) = Σ𝑎𝐵 (𝑋𝑎))
25 dchrsum.1 . . 3 1 = (0g𝐺)
265, 6, 7, 25, 8, 2dchrsum2 27195 . 2 (𝜑 → Σ𝑎 ∈ (Unit‘𝑍)(𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0))
2724, 26eqtr3d 2766 1 (𝜑 → Σ𝑎𝐵 (𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3902  wss 3905  ifcif 4478  wf 6482  cfv 6486  Fincfn 8879  cc 11026  0cc0 11028  cn 12146  Σcsu 15611  ϕcphi 16693  Basecbs 17138  0gc0g 17361  Unitcui 20258  ℤ/nczn 21427  DChrcdchr 27159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-dvds 16182  df-gcd 16424  df-phi 16695  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-0g 17363  df-imas 17430  df-qus 17431  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-nsg 19021  df-eqg 19022  df-ghm 19110  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-rhm 20375  df-subrng 20449  df-subrg 20473  df-lmod 20783  df-lss 20853  df-lsp 20893  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-rsp 21134  df-2idl 21175  df-cnfld 21280  df-zring 21372  df-zrh 21428  df-zn 21431  df-dchr 27160
This theorem is referenced by:  dchrhash  27198  dchr2sum  27200  dchrisumlem1  27416
  Copyright terms: Public domain W3C validator