| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrsum | Structured version Visualization version GIF version | ||
| Description: An orthogonality relation for Dirichlet characters: the sum of all the values of a Dirichlet character 𝑋 is 0 if 𝑋 is non-principal and ϕ(𝑛) otherwise. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.) |
| Ref | Expression |
|---|---|
| dchrsum.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrsum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| dchrsum.d | ⊢ 𝐷 = (Base‘𝐺) |
| dchrsum.1 | ⊢ 1 = (0g‘𝐺) |
| dchrsum.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| dchrsum.b | ⊢ 𝐵 = (Base‘𝑍) |
| Ref | Expression |
|---|---|
| dchrsum | ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 (𝑋‘𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dchrsum.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑍) | |
| 2 | eqid 2730 | . . . . 5 ⊢ (Unit‘𝑍) = (Unit‘𝑍) | |
| 3 | 1, 2 | unitss 20292 | . . . 4 ⊢ (Unit‘𝑍) ⊆ 𝐵 |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (Unit‘𝑍) ⊆ 𝐵) |
| 5 | dchrsum.g | . . . . 5 ⊢ 𝐺 = (DChr‘𝑁) | |
| 6 | dchrsum.z | . . . . 5 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 7 | dchrsum.d | . . . . 5 ⊢ 𝐷 = (Base‘𝐺) | |
| 8 | dchrsum.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 9 | 5, 6, 7, 1, 8 | dchrf 27160 | . . . 4 ⊢ (𝜑 → 𝑋:𝐵⟶ℂ) |
| 10 | 3 | sseli 3945 | . . . 4 ⊢ (𝑎 ∈ (Unit‘𝑍) → 𝑎 ∈ 𝐵) |
| 11 | ffvelcdm 7056 | . . . 4 ⊢ ((𝑋:𝐵⟶ℂ ∧ 𝑎 ∈ 𝐵) → (𝑋‘𝑎) ∈ ℂ) | |
| 12 | 9, 10, 11 | syl2an 596 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (Unit‘𝑍)) → (𝑋‘𝑎) ∈ ℂ) |
| 13 | eldif 3927 | . . . 4 ⊢ (𝑎 ∈ (𝐵 ∖ (Unit‘𝑍)) ↔ (𝑎 ∈ 𝐵 ∧ ¬ 𝑎 ∈ (Unit‘𝑍))) | |
| 14 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋 ∈ 𝐷) |
| 15 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) | |
| 16 | 5, 6, 7, 1, 2, 14, 15 | dchrn0 27168 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋‘𝑎) ≠ 0 ↔ 𝑎 ∈ (Unit‘𝑍))) |
| 17 | 16 | biimpd 229 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋‘𝑎) ≠ 0 → 𝑎 ∈ (Unit‘𝑍))) |
| 18 | 17 | necon1bd 2944 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (¬ 𝑎 ∈ (Unit‘𝑍) → (𝑋‘𝑎) = 0)) |
| 19 | 18 | impr 454 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ ¬ 𝑎 ∈ (Unit‘𝑍))) → (𝑋‘𝑎) = 0) |
| 20 | 13, 19 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐵 ∖ (Unit‘𝑍))) → (𝑋‘𝑎) = 0) |
| 21 | 5, 7 | dchrrcl 27158 | . . . 4 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
| 22 | 6, 1 | znfi 21476 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝐵 ∈ Fin) |
| 23 | 8, 21, 22 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) |
| 24 | 4, 12, 20, 23 | fsumss 15698 | . 2 ⊢ (𝜑 → Σ𝑎 ∈ (Unit‘𝑍)(𝑋‘𝑎) = Σ𝑎 ∈ 𝐵 (𝑋‘𝑎)) |
| 25 | dchrsum.1 | . . 3 ⊢ 1 = (0g‘𝐺) | |
| 26 | 5, 6, 7, 25, 8, 2 | dchrsum2 27186 | . 2 ⊢ (𝜑 → Σ𝑎 ∈ (Unit‘𝑍)(𝑋‘𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)) |
| 27 | 24, 26 | eqtr3d 2767 | 1 ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 (𝑋‘𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 ⊆ wss 3917 ifcif 4491 ⟶wf 6510 ‘cfv 6514 Fincfn 8921 ℂcc 11073 0cc0 11075 ℕcn 12193 Σcsu 15659 ϕcphi 16741 Basecbs 17186 0gc0g 17409 Unitcui 20271 ℤ/nℤczn 21419 DChrcdchr 27150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-er 8674 df-ec 8676 df-qs 8680 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-xnn0 12523 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-dvds 16230 df-gcd 16472 df-phi 16743 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-0g 17411 df-imas 17478 df-qus 17479 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-nsg 19063 df-eqg 19064 df-ghm 19152 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-rhm 20388 df-subrng 20462 df-subrg 20486 df-lmod 20775 df-lss 20845 df-lsp 20885 df-sra 21087 df-rgmod 21088 df-lidl 21125 df-rsp 21126 df-2idl 21167 df-cnfld 21272 df-zring 21364 df-zrh 21420 df-zn 21423 df-dchr 27151 |
| This theorem is referenced by: dchrhash 27189 dchr2sum 27191 dchrisumlem1 27407 |
| Copyright terms: Public domain | W3C validator |