![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrsum | Structured version Visualization version GIF version |
Description: An orthogonality relation for Dirichlet characters: the sum of all the values of a Dirichlet character 𝑋 is 0 if 𝑋 is non-principal and ϕ(𝑛) otherwise. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.) |
Ref | Expression |
---|---|
dchrsum.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrsum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrsum.d | ⊢ 𝐷 = (Base‘𝐺) |
dchrsum.1 | ⊢ 1 = (0g‘𝐺) |
dchrsum.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrsum.b | ⊢ 𝐵 = (Base‘𝑍) |
Ref | Expression |
---|---|
dchrsum | ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 (𝑋‘𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrsum.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑍) | |
2 | eqid 2740 | . . . . 5 ⊢ (Unit‘𝑍) = (Unit‘𝑍) | |
3 | 1, 2 | unitss 20402 | . . . 4 ⊢ (Unit‘𝑍) ⊆ 𝐵 |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (Unit‘𝑍) ⊆ 𝐵) |
5 | dchrsum.g | . . . . 5 ⊢ 𝐺 = (DChr‘𝑁) | |
6 | dchrsum.z | . . . . 5 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
7 | dchrsum.d | . . . . 5 ⊢ 𝐷 = (Base‘𝐺) | |
8 | dchrsum.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
9 | 5, 6, 7, 1, 8 | dchrf 27304 | . . . 4 ⊢ (𝜑 → 𝑋:𝐵⟶ℂ) |
10 | 3 | sseli 4004 | . . . 4 ⊢ (𝑎 ∈ (Unit‘𝑍) → 𝑎 ∈ 𝐵) |
11 | ffvelcdm 7115 | . . . 4 ⊢ ((𝑋:𝐵⟶ℂ ∧ 𝑎 ∈ 𝐵) → (𝑋‘𝑎) ∈ ℂ) | |
12 | 9, 10, 11 | syl2an 595 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (Unit‘𝑍)) → (𝑋‘𝑎) ∈ ℂ) |
13 | eldif 3986 | . . . 4 ⊢ (𝑎 ∈ (𝐵 ∖ (Unit‘𝑍)) ↔ (𝑎 ∈ 𝐵 ∧ ¬ 𝑎 ∈ (Unit‘𝑍))) | |
14 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋 ∈ 𝐷) |
15 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) | |
16 | 5, 6, 7, 1, 2, 14, 15 | dchrn0 27312 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋‘𝑎) ≠ 0 ↔ 𝑎 ∈ (Unit‘𝑍))) |
17 | 16 | biimpd 229 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋‘𝑎) ≠ 0 → 𝑎 ∈ (Unit‘𝑍))) |
18 | 17 | necon1bd 2964 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (¬ 𝑎 ∈ (Unit‘𝑍) → (𝑋‘𝑎) = 0)) |
19 | 18 | impr 454 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ ¬ 𝑎 ∈ (Unit‘𝑍))) → (𝑋‘𝑎) = 0) |
20 | 13, 19 | sylan2b 593 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐵 ∖ (Unit‘𝑍))) → (𝑋‘𝑎) = 0) |
21 | 5, 7 | dchrrcl 27302 | . . . 4 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
22 | 6, 1 | znfi 21601 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝐵 ∈ Fin) |
23 | 8, 21, 22 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) |
24 | 4, 12, 20, 23 | fsumss 15773 | . 2 ⊢ (𝜑 → Σ𝑎 ∈ (Unit‘𝑍)(𝑋‘𝑎) = Σ𝑎 ∈ 𝐵 (𝑋‘𝑎)) |
25 | dchrsum.1 | . . 3 ⊢ 1 = (0g‘𝐺) | |
26 | 5, 6, 7, 25, 8, 2 | dchrsum2 27330 | . 2 ⊢ (𝜑 → Σ𝑎 ∈ (Unit‘𝑍)(𝑋‘𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)) |
27 | 24, 26 | eqtr3d 2782 | 1 ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 (𝑋‘𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 ⊆ wss 3976 ifcif 4548 ⟶wf 6569 ‘cfv 6573 Fincfn 9003 ℂcc 11182 0cc0 11184 ℕcn 12293 Σcsu 15734 ϕcphi 16811 Basecbs 17258 0gc0g 17499 Unitcui 20381 ℤ/nℤczn 21536 DChrcdchr 27294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-er 8763 df-ec 8765 df-qs 8769 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-dvds 16303 df-gcd 16541 df-phi 16813 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-imas 17568 df-qus 17569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-nsg 19164 df-eqg 19165 df-ghm 19253 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-lmod 20882 df-lss 20953 df-lsp 20993 df-sra 21195 df-rgmod 21196 df-lidl 21241 df-rsp 21242 df-2idl 21283 df-cnfld 21388 df-zring 21481 df-zrh 21537 df-zn 21540 df-dchr 27295 |
This theorem is referenced by: dchrhash 27333 dchr2sum 27335 dchrisumlem1 27551 |
Copyright terms: Public domain | W3C validator |