MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgradd2 Structured version   Visualization version   GIF version

Theorem dgradd2 25334
Description: The degree of a sum of polynomials of unequal degrees is the degree of the larger polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgradd.1 𝑀 = (deg‘𝐹)
dgradd.2 𝑁 = (deg‘𝐺)
Assertion
Ref Expression
dgradd2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) = 𝑁)

Proof of Theorem dgradd2
StepHypRef Expression
1 plyaddcl 25286 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f + 𝐺) ∈ (Poly‘ℂ))
213adant3 1130 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (𝐹f + 𝐺) ∈ (Poly‘ℂ))
3 dgrcl 25299 . . . . 5 ((𝐹f + 𝐺) ∈ (Poly‘ℂ) → (deg‘(𝐹f + 𝐺)) ∈ ℕ0)
42, 3syl 17 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) ∈ ℕ0)
54nn0red 12224 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) ∈ ℝ)
6 dgradd.2 . . . . . . 7 𝑁 = (deg‘𝐺)
7 dgrcl 25299 . . . . . . 7 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
86, 7eqeltrid 2843 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
983ad2ant2 1132 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℕ0)
109nn0red 12224 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℝ)
11 dgradd.1 . . . . . . 7 𝑀 = (deg‘𝐹)
12 dgrcl 25299 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
1311, 12eqeltrid 2843 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝑀 ∈ ℕ0)
14133ad2ant1 1131 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℕ0)
1514nn0red 12224 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℝ)
1610, 15ifcld 4502 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℝ)
1711, 6dgradd 25333 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹f + 𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀))
18173adant3 1130 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀))
1910leidd 11471 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑁𝑁)
20 simp3 1136 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑀 < 𝑁)
2115, 10, 20ltled 11053 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑀𝑁)
22 breq1 5073 . . . . 5 (𝑁 = if(𝑀𝑁, 𝑁, 𝑀) → (𝑁𝑁 ↔ if(𝑀𝑁, 𝑁, 𝑀) ≤ 𝑁))
23 breq1 5073 . . . . 5 (𝑀 = if(𝑀𝑁, 𝑁, 𝑀) → (𝑀𝑁 ↔ if(𝑀𝑁, 𝑁, 𝑀) ≤ 𝑁))
2422, 23ifboth 4495 . . . 4 ((𝑁𝑁𝑀𝑁) → if(𝑀𝑁, 𝑁, 𝑀) ≤ 𝑁)
2519, 21, 24syl2anc 583 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → if(𝑀𝑁, 𝑁, 𝑀) ≤ 𝑁)
265, 16, 10, 18, 25letrd 11062 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) ≤ 𝑁)
27 eqid 2738 . . . . . . . 8 (coeff‘𝐹) = (coeff‘𝐹)
28 eqid 2738 . . . . . . . 8 (coeff‘𝐺) = (coeff‘𝐺)
2927, 28coeadd 25317 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f + 𝐺)) = ((coeff‘𝐹) ∘f + (coeff‘𝐺)))
30293adant3 1130 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (coeff‘(𝐹f + 𝐺)) = ((coeff‘𝐹) ∘f + (coeff‘𝐺)))
3130fveq1d 6758 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘(𝐹f + 𝐺))‘𝑁) = (((coeff‘𝐹) ∘f + (coeff‘𝐺))‘𝑁))
3227coef3 25298 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
33323ad2ant1 1131 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (coeff‘𝐹):ℕ0⟶ℂ)
3433ffnd 6585 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (coeff‘𝐹) Fn ℕ0)
3528coef3 25298 . . . . . . . . 9 (𝐺 ∈ (Poly‘𝑆) → (coeff‘𝐺):ℕ0⟶ℂ)
36353ad2ant2 1132 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (coeff‘𝐺):ℕ0⟶ℂ)
3736ffnd 6585 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (coeff‘𝐺) Fn ℕ0)
38 nn0ex 12169 . . . . . . . 8 0 ∈ V
3938a1i 11 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ℕ0 ∈ V)
40 inidm 4149 . . . . . . 7 (ℕ0 ∩ ℕ0) = ℕ0
4115, 10ltnled 11052 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (𝑀 < 𝑁 ↔ ¬ 𝑁𝑀))
4220, 41mpbid 231 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ¬ 𝑁𝑀)
43 simp1 1134 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝐹 ∈ (Poly‘𝑆))
4427, 11dgrub 25300 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝐹)‘𝑁) ≠ 0) → 𝑁𝑀)
45443expia 1119 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → (((coeff‘𝐹)‘𝑁) ≠ 0 → 𝑁𝑀))
4643, 9, 45syl2anc 583 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (((coeff‘𝐹)‘𝑁) ≠ 0 → 𝑁𝑀))
4746necon1bd 2960 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (¬ 𝑁𝑀 → ((coeff‘𝐹)‘𝑁) = 0))
4842, 47mpd 15 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘𝐹)‘𝑁) = 0)
4948adantr 480 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹)‘𝑁) = 0)
50 eqidd 2739 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐺)‘𝑁) = ((coeff‘𝐺)‘𝑁))
5134, 37, 39, 39, 40, 49, 50ofval 7522 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) ∧ 𝑁 ∈ ℕ0) → (((coeff‘𝐹) ∘f + (coeff‘𝐺))‘𝑁) = (0 + ((coeff‘𝐺)‘𝑁)))
529, 51mpdan 683 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (((coeff‘𝐹) ∘f + (coeff‘𝐺))‘𝑁) = (0 + ((coeff‘𝐺)‘𝑁)))
5336, 9ffvelrnd 6944 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘𝐺)‘𝑁) ∈ ℂ)
5453addid2d 11106 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (0 + ((coeff‘𝐺)‘𝑁)) = ((coeff‘𝐺)‘𝑁))
5531, 52, 543eqtrd 2782 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘(𝐹f + 𝐺))‘𝑁) = ((coeff‘𝐺)‘𝑁))
56 simp2 1135 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝐺 ∈ (Poly‘𝑆))
57 0red 10909 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 0 ∈ ℝ)
5814nn0ge0d 12226 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 0 ≤ 𝑀)
5957, 15, 10, 58, 20lelttrd 11063 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 0 < 𝑁)
6059gt0ne0d 11469 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑁 ≠ 0)
616, 28dgreq0 25331 . . . . . . 7 (𝐺 ∈ (Poly‘𝑆) → (𝐺 = 0𝑝 ↔ ((coeff‘𝐺)‘𝑁) = 0))
62 fveq2 6756 . . . . . . . 8 (𝐺 = 0𝑝 → (deg‘𝐺) = (deg‘0𝑝))
63 dgr0 25328 . . . . . . . . 9 (deg‘0𝑝) = 0
6463eqcomi 2747 . . . . . . . 8 0 = (deg‘0𝑝)
6562, 6, 643eqtr4g 2804 . . . . . . 7 (𝐺 = 0𝑝𝑁 = 0)
6661, 65syl6bir 253 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → (((coeff‘𝐺)‘𝑁) = 0 → 𝑁 = 0))
6766necon3d 2963 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → (𝑁 ≠ 0 → ((coeff‘𝐺)‘𝑁) ≠ 0))
6856, 60, 67sylc 65 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘𝐺)‘𝑁) ≠ 0)
6955, 68eqnetrd 3010 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘(𝐹f + 𝐺))‘𝑁) ≠ 0)
70 eqid 2738 . . . 4 (coeff‘(𝐹f + 𝐺)) = (coeff‘(𝐹f + 𝐺))
71 eqid 2738 . . . 4 (deg‘(𝐹f + 𝐺)) = (deg‘(𝐹f + 𝐺))
7270, 71dgrub 25300 . . 3 (((𝐹f + 𝐺) ∈ (Poly‘ℂ) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘(𝐹f + 𝐺))‘𝑁) ≠ 0) → 𝑁 ≤ (deg‘(𝐹f + 𝐺)))
732, 9, 69, 72syl3anc 1369 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑁 ≤ (deg‘(𝐹f + 𝐺)))
745, 10letri3d 11047 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((deg‘(𝐹f + 𝐺)) = 𝑁 ↔ ((deg‘(𝐹f + 𝐺)) ≤ 𝑁𝑁 ≤ (deg‘(𝐹f + 𝐺)))))
7526, 73, 74mpbir2and 709 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  ifcif 4456   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  cc 10800  cr 10801  0cc0 10802   + caddc 10805   < clt 10940  cle 10941  0cn0 12163  0𝑝c0p 24738  Polycply 25250  coeffccoe 25252  degcdgr 25253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-0p 24739  df-ply 25254  df-coe 25256  df-dgr 25257
This theorem is referenced by:  dgrcolem2  25340  plyremlem  25369
  Copyright terms: Public domain W3C validator