MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgradd2 Structured version   Visualization version   GIF version

Theorem dgradd2 26181
Description: The degree of a sum of polynomials of unequal degrees is the degree of the larger polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgradd.1 𝑀 = (deg‘𝐹)
dgradd.2 𝑁 = (deg‘𝐺)
Assertion
Ref Expression
dgradd2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) = 𝑁)

Proof of Theorem dgradd2
StepHypRef Expression
1 plyaddcl 26132 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f + 𝐺) ∈ (Poly‘ℂ))
213adant3 1132 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (𝐹f + 𝐺) ∈ (Poly‘ℂ))
3 dgrcl 26145 . . . . 5 ((𝐹f + 𝐺) ∈ (Poly‘ℂ) → (deg‘(𝐹f + 𝐺)) ∈ ℕ0)
42, 3syl 17 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) ∈ ℕ0)
54nn0red 12511 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) ∈ ℝ)
6 dgradd.2 . . . . . . 7 𝑁 = (deg‘𝐺)
7 dgrcl 26145 . . . . . . 7 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
86, 7eqeltrid 2833 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
983ad2ant2 1134 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℕ0)
109nn0red 12511 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℝ)
11 dgradd.1 . . . . . . 7 𝑀 = (deg‘𝐹)
12 dgrcl 26145 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
1311, 12eqeltrid 2833 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝑀 ∈ ℕ0)
14133ad2ant1 1133 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℕ0)
1514nn0red 12511 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℝ)
1610, 15ifcld 4538 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℝ)
1711, 6dgradd 26180 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹f + 𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀))
18173adant3 1132 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀))
1910leidd 11751 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑁𝑁)
20 simp3 1138 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑀 < 𝑁)
2115, 10, 20ltled 11329 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑀𝑁)
22 breq1 5113 . . . . 5 (𝑁 = if(𝑀𝑁, 𝑁, 𝑀) → (𝑁𝑁 ↔ if(𝑀𝑁, 𝑁, 𝑀) ≤ 𝑁))
23 breq1 5113 . . . . 5 (𝑀 = if(𝑀𝑁, 𝑁, 𝑀) → (𝑀𝑁 ↔ if(𝑀𝑁, 𝑁, 𝑀) ≤ 𝑁))
2422, 23ifboth 4531 . . . 4 ((𝑁𝑁𝑀𝑁) → if(𝑀𝑁, 𝑁, 𝑀) ≤ 𝑁)
2519, 21, 24syl2anc 584 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → if(𝑀𝑁, 𝑁, 𝑀) ≤ 𝑁)
265, 16, 10, 18, 25letrd 11338 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) ≤ 𝑁)
27 eqid 2730 . . . . . . . 8 (coeff‘𝐹) = (coeff‘𝐹)
28 eqid 2730 . . . . . . . 8 (coeff‘𝐺) = (coeff‘𝐺)
2927, 28coeadd 26163 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f + 𝐺)) = ((coeff‘𝐹) ∘f + (coeff‘𝐺)))
30293adant3 1132 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (coeff‘(𝐹f + 𝐺)) = ((coeff‘𝐹) ∘f + (coeff‘𝐺)))
3130fveq1d 6863 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘(𝐹f + 𝐺))‘𝑁) = (((coeff‘𝐹) ∘f + (coeff‘𝐺))‘𝑁))
3227coef3 26144 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
33323ad2ant1 1133 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (coeff‘𝐹):ℕ0⟶ℂ)
3433ffnd 6692 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (coeff‘𝐹) Fn ℕ0)
3528coef3 26144 . . . . . . . . 9 (𝐺 ∈ (Poly‘𝑆) → (coeff‘𝐺):ℕ0⟶ℂ)
36353ad2ant2 1134 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (coeff‘𝐺):ℕ0⟶ℂ)
3736ffnd 6692 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (coeff‘𝐺) Fn ℕ0)
38 nn0ex 12455 . . . . . . . 8 0 ∈ V
3938a1i 11 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ℕ0 ∈ V)
40 inidm 4193 . . . . . . 7 (ℕ0 ∩ ℕ0) = ℕ0
4115, 10ltnled 11328 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (𝑀 < 𝑁 ↔ ¬ 𝑁𝑀))
4220, 41mpbid 232 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ¬ 𝑁𝑀)
43 simp1 1136 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝐹 ∈ (Poly‘𝑆))
4427, 11dgrub 26146 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝐹)‘𝑁) ≠ 0) → 𝑁𝑀)
45443expia 1121 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → (((coeff‘𝐹)‘𝑁) ≠ 0 → 𝑁𝑀))
4643, 9, 45syl2anc 584 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (((coeff‘𝐹)‘𝑁) ≠ 0 → 𝑁𝑀))
4746necon1bd 2944 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (¬ 𝑁𝑀 → ((coeff‘𝐹)‘𝑁) = 0))
4842, 47mpd 15 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘𝐹)‘𝑁) = 0)
4948adantr 480 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹)‘𝑁) = 0)
50 eqidd 2731 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐺)‘𝑁) = ((coeff‘𝐺)‘𝑁))
5134, 37, 39, 39, 40, 49, 50ofval 7667 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) ∧ 𝑁 ∈ ℕ0) → (((coeff‘𝐹) ∘f + (coeff‘𝐺))‘𝑁) = (0 + ((coeff‘𝐺)‘𝑁)))
529, 51mpdan 687 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (((coeff‘𝐹) ∘f + (coeff‘𝐺))‘𝑁) = (0 + ((coeff‘𝐺)‘𝑁)))
5336, 9ffvelcdmd 7060 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘𝐺)‘𝑁) ∈ ℂ)
5453addlidd 11382 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (0 + ((coeff‘𝐺)‘𝑁)) = ((coeff‘𝐺)‘𝑁))
5531, 52, 543eqtrd 2769 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘(𝐹f + 𝐺))‘𝑁) = ((coeff‘𝐺)‘𝑁))
56 simp2 1137 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝐺 ∈ (Poly‘𝑆))
57 0red 11184 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 0 ∈ ℝ)
5814nn0ge0d 12513 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 0 ≤ 𝑀)
5957, 15, 10, 58, 20lelttrd 11339 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 0 < 𝑁)
6059gt0ne0d 11749 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑁 ≠ 0)
616, 28dgreq0 26178 . . . . . . 7 (𝐺 ∈ (Poly‘𝑆) → (𝐺 = 0𝑝 ↔ ((coeff‘𝐺)‘𝑁) = 0))
62 fveq2 6861 . . . . . . . 8 (𝐺 = 0𝑝 → (deg‘𝐺) = (deg‘0𝑝))
63 dgr0 26175 . . . . . . . . 9 (deg‘0𝑝) = 0
6463eqcomi 2739 . . . . . . . 8 0 = (deg‘0𝑝)
6562, 6, 643eqtr4g 2790 . . . . . . 7 (𝐺 = 0𝑝𝑁 = 0)
6661, 65biimtrrdi 254 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → (((coeff‘𝐺)‘𝑁) = 0 → 𝑁 = 0))
6766necon3d 2947 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → (𝑁 ≠ 0 → ((coeff‘𝐺)‘𝑁) ≠ 0))
6856, 60, 67sylc 65 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘𝐺)‘𝑁) ≠ 0)
6955, 68eqnetrd 2993 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘(𝐹f + 𝐺))‘𝑁) ≠ 0)
70 eqid 2730 . . . 4 (coeff‘(𝐹f + 𝐺)) = (coeff‘(𝐹f + 𝐺))
71 eqid 2730 . . . 4 (deg‘(𝐹f + 𝐺)) = (deg‘(𝐹f + 𝐺))
7270, 71dgrub 26146 . . 3 (((𝐹f + 𝐺) ∈ (Poly‘ℂ) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘(𝐹f + 𝐺))‘𝑁) ≠ 0) → 𝑁 ≤ (deg‘(𝐹f + 𝐺)))
732, 9, 69, 72syl3anc 1373 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑁 ≤ (deg‘(𝐹f + 𝐺)))
745, 10letri3d 11323 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((deg‘(𝐹f + 𝐺)) = 𝑁 ↔ ((deg‘(𝐹f + 𝐺)) ≤ 𝑁𝑁 ≤ (deg‘(𝐹f + 𝐺)))))
7526, 73, 74mpbir2and 713 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  ifcif 4491   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  cc 11073  cr 11074  0cc0 11075   + caddc 11078   < clt 11215  cle 11216  0cn0 12449  0𝑝c0p 25577  Polycply 26096  coeffccoe 26098  degcdgr 26099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-0p 25578  df-ply 26100  df-coe 26102  df-dgr 26103
This theorem is referenced by:  dgrcolem2  26187  plyremlem  26219
  Copyright terms: Public domain W3C validator