MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgradd2 Structured version   Visualization version   GIF version

Theorem dgradd2 26231
Description: The degree of a sum of polynomials of unequal degrees is the degree of the larger polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgradd.1 𝑀 = (deg‘𝐹)
dgradd.2 𝑁 = (deg‘𝐺)
Assertion
Ref Expression
dgradd2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) = 𝑁)

Proof of Theorem dgradd2
StepHypRef Expression
1 plyaddcl 26182 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f + 𝐺) ∈ (Poly‘ℂ))
213adant3 1132 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (𝐹f + 𝐺) ∈ (Poly‘ℂ))
3 dgrcl 26195 . . . . 5 ((𝐹f + 𝐺) ∈ (Poly‘ℂ) → (deg‘(𝐹f + 𝐺)) ∈ ℕ0)
42, 3syl 17 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) ∈ ℕ0)
54nn0red 12568 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) ∈ ℝ)
6 dgradd.2 . . . . . . 7 𝑁 = (deg‘𝐺)
7 dgrcl 26195 . . . . . . 7 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
86, 7eqeltrid 2839 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
983ad2ant2 1134 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℕ0)
109nn0red 12568 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℝ)
11 dgradd.1 . . . . . . 7 𝑀 = (deg‘𝐹)
12 dgrcl 26195 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
1311, 12eqeltrid 2839 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝑀 ∈ ℕ0)
14133ad2ant1 1133 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℕ0)
1514nn0red 12568 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℝ)
1610, 15ifcld 4552 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℝ)
1711, 6dgradd 26230 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹f + 𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀))
18173adant3 1132 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀))
1910leidd 11808 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑁𝑁)
20 simp3 1138 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑀 < 𝑁)
2115, 10, 20ltled 11388 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑀𝑁)
22 breq1 5127 . . . . 5 (𝑁 = if(𝑀𝑁, 𝑁, 𝑀) → (𝑁𝑁 ↔ if(𝑀𝑁, 𝑁, 𝑀) ≤ 𝑁))
23 breq1 5127 . . . . 5 (𝑀 = if(𝑀𝑁, 𝑁, 𝑀) → (𝑀𝑁 ↔ if(𝑀𝑁, 𝑁, 𝑀) ≤ 𝑁))
2422, 23ifboth 4545 . . . 4 ((𝑁𝑁𝑀𝑁) → if(𝑀𝑁, 𝑁, 𝑀) ≤ 𝑁)
2519, 21, 24syl2anc 584 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → if(𝑀𝑁, 𝑁, 𝑀) ≤ 𝑁)
265, 16, 10, 18, 25letrd 11397 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) ≤ 𝑁)
27 eqid 2736 . . . . . . . 8 (coeff‘𝐹) = (coeff‘𝐹)
28 eqid 2736 . . . . . . . 8 (coeff‘𝐺) = (coeff‘𝐺)
2927, 28coeadd 26213 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f + 𝐺)) = ((coeff‘𝐹) ∘f + (coeff‘𝐺)))
30293adant3 1132 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (coeff‘(𝐹f + 𝐺)) = ((coeff‘𝐹) ∘f + (coeff‘𝐺)))
3130fveq1d 6883 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘(𝐹f + 𝐺))‘𝑁) = (((coeff‘𝐹) ∘f + (coeff‘𝐺))‘𝑁))
3227coef3 26194 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
33323ad2ant1 1133 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (coeff‘𝐹):ℕ0⟶ℂ)
3433ffnd 6712 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (coeff‘𝐹) Fn ℕ0)
3528coef3 26194 . . . . . . . . 9 (𝐺 ∈ (Poly‘𝑆) → (coeff‘𝐺):ℕ0⟶ℂ)
36353ad2ant2 1134 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (coeff‘𝐺):ℕ0⟶ℂ)
3736ffnd 6712 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (coeff‘𝐺) Fn ℕ0)
38 nn0ex 12512 . . . . . . . 8 0 ∈ V
3938a1i 11 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ℕ0 ∈ V)
40 inidm 4207 . . . . . . 7 (ℕ0 ∩ ℕ0) = ℕ0
4115, 10ltnled 11387 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (𝑀 < 𝑁 ↔ ¬ 𝑁𝑀))
4220, 41mpbid 232 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ¬ 𝑁𝑀)
43 simp1 1136 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝐹 ∈ (Poly‘𝑆))
4427, 11dgrub 26196 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝐹)‘𝑁) ≠ 0) → 𝑁𝑀)
45443expia 1121 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → (((coeff‘𝐹)‘𝑁) ≠ 0 → 𝑁𝑀))
4643, 9, 45syl2anc 584 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (((coeff‘𝐹)‘𝑁) ≠ 0 → 𝑁𝑀))
4746necon1bd 2951 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (¬ 𝑁𝑀 → ((coeff‘𝐹)‘𝑁) = 0))
4842, 47mpd 15 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘𝐹)‘𝑁) = 0)
4948adantr 480 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹)‘𝑁) = 0)
50 eqidd 2737 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐺)‘𝑁) = ((coeff‘𝐺)‘𝑁))
5134, 37, 39, 39, 40, 49, 50ofval 7687 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) ∧ 𝑁 ∈ ℕ0) → (((coeff‘𝐹) ∘f + (coeff‘𝐺))‘𝑁) = (0 + ((coeff‘𝐺)‘𝑁)))
529, 51mpdan 687 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (((coeff‘𝐹) ∘f + (coeff‘𝐺))‘𝑁) = (0 + ((coeff‘𝐺)‘𝑁)))
5336, 9ffvelcdmd 7080 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘𝐺)‘𝑁) ∈ ℂ)
5453addlidd 11441 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (0 + ((coeff‘𝐺)‘𝑁)) = ((coeff‘𝐺)‘𝑁))
5531, 52, 543eqtrd 2775 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘(𝐹f + 𝐺))‘𝑁) = ((coeff‘𝐺)‘𝑁))
56 simp2 1137 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝐺 ∈ (Poly‘𝑆))
57 0red 11243 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 0 ∈ ℝ)
5814nn0ge0d 12570 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 0 ≤ 𝑀)
5957, 15, 10, 58, 20lelttrd 11398 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 0 < 𝑁)
6059gt0ne0d 11806 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑁 ≠ 0)
616, 28dgreq0 26228 . . . . . . 7 (𝐺 ∈ (Poly‘𝑆) → (𝐺 = 0𝑝 ↔ ((coeff‘𝐺)‘𝑁) = 0))
62 fveq2 6881 . . . . . . . 8 (𝐺 = 0𝑝 → (deg‘𝐺) = (deg‘0𝑝))
63 dgr0 26225 . . . . . . . . 9 (deg‘0𝑝) = 0
6463eqcomi 2745 . . . . . . . 8 0 = (deg‘0𝑝)
6562, 6, 643eqtr4g 2796 . . . . . . 7 (𝐺 = 0𝑝𝑁 = 0)
6661, 65biimtrrdi 254 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → (((coeff‘𝐺)‘𝑁) = 0 → 𝑁 = 0))
6766necon3d 2954 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → (𝑁 ≠ 0 → ((coeff‘𝐺)‘𝑁) ≠ 0))
6856, 60, 67sylc 65 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘𝐺)‘𝑁) ≠ 0)
6955, 68eqnetrd 3000 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘(𝐹f + 𝐺))‘𝑁) ≠ 0)
70 eqid 2736 . . . 4 (coeff‘(𝐹f + 𝐺)) = (coeff‘(𝐹f + 𝐺))
71 eqid 2736 . . . 4 (deg‘(𝐹f + 𝐺)) = (deg‘(𝐹f + 𝐺))
7270, 71dgrub 26196 . . 3 (((𝐹f + 𝐺) ∈ (Poly‘ℂ) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘(𝐹f + 𝐺))‘𝑁) ≠ 0) → 𝑁 ≤ (deg‘(𝐹f + 𝐺)))
732, 9, 69, 72syl3anc 1373 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑁 ≤ (deg‘(𝐹f + 𝐺)))
745, 10letri3d 11382 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((deg‘(𝐹f + 𝐺)) = 𝑁 ↔ ((deg‘(𝐹f + 𝐺)) ≤ 𝑁𝑁 ≤ (deg‘(𝐹f + 𝐺)))))
7526, 73, 74mpbir2and 713 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  ifcif 4505   class class class wbr 5124  wf 6532  cfv 6536  (class class class)co 7410  f cof 7674  cc 11132  cr 11133  0cc0 11134   + caddc 11137   < clt 11274  cle 11275  0cn0 12506  0𝑝c0p 25627  Polycply 26146  coeffccoe 26148  degcdgr 26149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-0p 25628  df-ply 26150  df-coe 26152  df-dgr 26153
This theorem is referenced by:  dgrcolem2  26237  plyremlem  26269
  Copyright terms: Public domain W3C validator