Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negne0bi | Structured version Visualization version GIF version |
Description: A number is nonzero iff its negative is nonzero. (Contributed by NM, 10-Aug-1999.) |
Ref | Expression |
---|---|
negidi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
negne0bi | ⊢ (𝐴 ≠ 0 ↔ -𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidi.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
2 | negeq0 11325 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐴 = 0 ↔ -𝐴 = 0) |
4 | 3 | necon3bii 2993 | 1 ⊢ (𝐴 ≠ 0 ↔ -𝐴 ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2104 ≠ wne 2940 ℂcc 10919 0cc0 10921 -cneg 11256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3332 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-ltxr 11064 df-sub 11257 df-neg 11258 |
This theorem is referenced by: negne0i 11346 |
Copyright terms: Public domain | W3C validator |