| Metamath
Proof Explorer Theorem List (p. 116 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | subid1 11501 | Identity law for subtraction. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴) | ||
| Theorem | npncan 11502 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) + (𝐵 − 𝐶)) = (𝐴 − 𝐶)) | ||
| Theorem | nppcan 11503 | Cancellation law for subtraction. (Contributed by NM, 1-Sep-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 − 𝐵) + 𝐶) + 𝐵) = (𝐴 + 𝐶)) | ||
| Theorem | nnpcan 11504 | Cancellation law for subtraction: ((a-b)-c)+b = a-c holds for complex numbers a,b,c. (Contributed by Alexander van der Vekens, 24-Mar-2018.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 − 𝐵) − 𝐶) + 𝐵) = (𝐴 − 𝐶)) | ||
| Theorem | nppcan3 11505 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 14-Sep-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) + (𝐶 + 𝐵)) = (𝐴 + 𝐶)) | ||
| Theorem | subcan2 11506 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶) = (𝐵 − 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | subeq0 11507 | If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | ||
| Theorem | npncan2 11508 | Cancellation law for subtraction. (Contributed by Scott Fenton, 21-Jun-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + (𝐵 − 𝐴)) = 0) | ||
| Theorem | subsub2 11509 | Law for double subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = (𝐴 + (𝐶 − 𝐵))) | ||
| Theorem | nncan 11510 | Cancellation law for subtraction. (Contributed by NM, 21-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴 − 𝐵)) = 𝐵) | ||
| Theorem | subsub 11511 | Law for double subtraction. (Contributed by NM, 13-May-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 − 𝐵) + 𝐶)) | ||
| Theorem | nppcan2 11512 | Cancellation law for subtraction. (Contributed by NM, 29-Sep-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − (𝐵 + 𝐶)) + 𝐶) = (𝐴 − 𝐵)) | ||
| Theorem | subsub3 11513 | Law for double subtraction. (Contributed by NM, 27-Jul-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 + 𝐶) − 𝐵)) | ||
| Theorem | subsub4 11514 | Law for double subtraction. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) − 𝐶) = (𝐴 − (𝐵 + 𝐶))) | ||
| Theorem | sub32 11515 | Swap the second and third terms in a double subtraction. (Contributed by NM, 19-Aug-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) − 𝐶) = ((𝐴 − 𝐶) − 𝐵)) | ||
| Theorem | nnncan 11516 | Cancellation law for subtraction. (Contributed by NM, 4-Sep-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − (𝐵 − 𝐶)) − 𝐶) = (𝐴 − 𝐵)) | ||
| Theorem | nnncan1 11517 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) − (𝐴 − 𝐶)) = (𝐶 − 𝐵)) | ||
| Theorem | nnncan2 11518 | Cancellation law for subtraction. (Contributed by NM, 1-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶) − (𝐵 − 𝐶)) = (𝐴 − 𝐵)) | ||
| Theorem | npncan3 11519 | Cancellation law for subtraction. (Contributed by Scott Fenton, 23-Jun-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) + (𝐶 − 𝐴)) = (𝐶 − 𝐵)) | ||
| Theorem | pnpcan 11520 | Cancellation law for mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by SN, 13-Nov-2023.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴 + 𝐶)) = (𝐵 − 𝐶)) | ||
| Theorem | pnpcan2 11521 | Cancellation law for mixed addition and subtraction. (Contributed by Scott Fenton, 9-Jun-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶) − (𝐵 + 𝐶)) = (𝐴 − 𝐵)) | ||
| Theorem | pnncan 11522 | Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴 − 𝐶)) = (𝐵 + 𝐶)) | ||
| Theorem | ppncan 11523 | Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐶 − 𝐵)) = (𝐴 + 𝐶)) | ||
| Theorem | addsub4 11524 | Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴 − 𝐶) + (𝐵 − 𝐷))) | ||
| Theorem | subadd4 11525 | Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 24-Aug-2006.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) − (𝐶 − 𝐷)) = ((𝐴 + 𝐷) − (𝐵 + 𝐶))) | ||
| Theorem | sub4 11526 | Rearrangement of 4 terms in a subtraction. (Contributed by NM, 23-Nov-2007.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) − (𝐶 − 𝐷)) = ((𝐴 − 𝐶) − (𝐵 − 𝐷))) | ||
| Theorem | neg0 11527 | Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.) |
| ⊢ -0 = 0 | ||
| Theorem | negid 11528 | Addition of a number and its negative. (Contributed by NM, 14-Mar-2005.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0) | ||
| Theorem | negsub 11529 | Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | ||
| Theorem | subneg 11530 | Relationship between subtraction and negative. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵)) | ||
| Theorem | negneg 11531 | A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 12-Jan-2002.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | ||
| Theorem | neg11 11532 | Negative is one-to-one. (Contributed by NM, 8-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = -𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | negcon1 11533 | Negative contraposition law. (Contributed by NM, 9-May-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴)) | ||
| Theorem | negcon2 11534 | Negative contraposition law. (Contributed by NM, 14-Nov-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = -𝐵 ↔ 𝐵 = -𝐴)) | ||
| Theorem | negeq0 11535 | A number is zero iff its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0)) | ||
| Theorem | subcan 11536 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = (𝐴 − 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | negsubdi 11537 | Distribution of negative over subtraction. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (-𝐴 + 𝐵)) | ||
| Theorem | negdi 11538 | Distribution of negative over addition. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴 + -𝐵)) | ||
| Theorem | negdi2 11539 | Distribution of negative over addition. (Contributed by NM, 1-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴 − 𝐵)) | ||
| Theorem | negsubdi2 11540 | Distribution of negative over subtraction. (Contributed by NM, 4-Oct-1999.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) | ||
| Theorem | neg2sub 11541 | Relationship between subtraction and negative. (Contributed by Paul Chapman, 8-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 − -𝐵) = (𝐵 − 𝐴)) | ||
| Theorem | renegcli 11542 | Closure law for negative of reals. (Note: this inference proof style and the deduction theorem usage in renegcl 11544 is deprecated, but is retained for its demonstration value.) (Contributed by NM, 17-Jan-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ -𝐴 ∈ ℝ | ||
| Theorem | resubcli 11543 | Closure law for subtraction of reals. (Contributed by NM, 17-Jan-1997.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 − 𝐵) ∈ ℝ | ||
| Theorem | renegcl 11544 | Closure law for negative of reals. The weak deduction theorem dedth 4559 is used to convert hypothesis of the inference (deduction) form of this theorem, renegcli 11542, to an antecedent. (Contributed by NM, 20-Jan-1997.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | ||
| Theorem | resubcl 11545 | Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) | ||
| Theorem | negreb 11546 | The negative of a real is real. (Contributed by NM, 11-Aug-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ)) | ||
| Theorem | peano2cnm 11547 | "Reverse" second Peano postulate analogue for complex numbers: A complex number minus 1 is a complex number. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
| ⊢ (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ) | ||
| Theorem | peano2rem 11548 | "Reverse" second Peano postulate analogue for reals. (Contributed by NM, 6-Feb-2007.) |
| ⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ) | ||
| Theorem | negcli 11549 | Closure law for negative. (Contributed by NM, 26-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ -𝐴 ∈ ℂ | ||
| Theorem | negidi 11550 | Addition of a number and its negative. (Contributed by NM, 26-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 + -𝐴) = 0 | ||
| Theorem | negnegi 11551 | A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 8-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ --𝐴 = 𝐴 | ||
| Theorem | subidi 11552 | Subtraction of a number from itself. (Contributed by NM, 26-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 − 𝐴) = 0 | ||
| Theorem | subid1i 11553 | Identity law for subtraction. (Contributed by NM, 29-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 − 0) = 𝐴 | ||
| Theorem | negne0bi 11554 | A number is nonzero iff its negative is nonzero. (Contributed by NM, 10-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ≠ 0 ↔ -𝐴 ≠ 0) | ||
| Theorem | negrebi 11555 | The negative of a real is real. (Contributed by NM, 11-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ) | ||
| Theorem | negne0i 11556 | The negative of a nonzero number is nonzero. (Contributed by NM, 30-Jul-2004.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 ≠ 0 ⇒ ⊢ -𝐴 ≠ 0 | ||
| Theorem | subcli 11557 | Closure law for subtraction. (Contributed by NM, 26-Nov-1994.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 − 𝐵) ∈ ℂ | ||
| Theorem | pncan3i 11558 | Subtraction and addition of equals. (Contributed by NM, 26-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 + (𝐵 − 𝐴)) = 𝐵 | ||
| Theorem | negsubi 11559 | Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 26-Nov-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 + -𝐵) = (𝐴 − 𝐵) | ||
| Theorem | subnegi 11560 | Relationship between subtraction and negative. (Contributed by NM, 1-Dec-2005.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 − -𝐵) = (𝐴 + 𝐵) | ||
| Theorem | subeq0i 11561 | If the difference between two numbers is zero, they are equal. (Contributed by NM, 8-May-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵) | ||
| Theorem | neg11i 11562 | Negative is one-to-one. (Contributed by NM, 1-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (-𝐴 = -𝐵 ↔ 𝐴 = 𝐵) | ||
| Theorem | negcon1i 11563 | Negative contraposition law. (Contributed by NM, 25-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴) | ||
| Theorem | negcon2i 11564 | Negative contraposition law. (Contributed by NM, 25-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 = -𝐵 ↔ 𝐵 = -𝐴) | ||
| Theorem | negdii 11565 | Distribution of negative over addition. (Contributed by NM, 28-Jul-1999.) (Proof shortened by OpenAI, 25-Mar-2011.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ -(𝐴 + 𝐵) = (-𝐴 + -𝐵) | ||
| Theorem | negsubdii 11566 | Distribution of negative over subtraction. (Contributed by NM, 6-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ -(𝐴 − 𝐵) = (-𝐴 + 𝐵) | ||
| Theorem | negsubdi2i 11567 | Distribution of negative over subtraction. (Contributed by NM, 1-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ -(𝐴 − 𝐵) = (𝐵 − 𝐴) | ||
| Theorem | subaddi 11568 | Relationship between subtraction and addition. (Contributed by NM, 26-Nov-1994.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴) | ||
| Theorem | subadd2i 11569 | Relationship between subtraction and addition. (Contributed by NM, 15-Dec-2006.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 − 𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴) | ||
| Theorem | subaddrii 11570 | Relationship between subtraction and addition. (Contributed by NM, 16-Dec-2006.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ (𝐵 + 𝐶) = 𝐴 ⇒ ⊢ (𝐴 − 𝐵) = 𝐶 | ||
| Theorem | subsub23i 11571 | Swap subtrahend and result of subtraction. (Contributed by NM, 7-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵) | ||
| Theorem | addsubassi 11572 | Associative-type law for subtraction and addition. (Contributed by NM, 16-Sep-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶)) | ||
| Theorem | addsubi 11573 | Law for subtraction and addition. (Contributed by NM, 6-Aug-2003.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵) | ||
| Theorem | subcani 11574 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 − 𝐵) = (𝐴 − 𝐶) ↔ 𝐵 = 𝐶) | ||
| Theorem | subcan2i 11575 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 − 𝐶) = (𝐵 − 𝐶) ↔ 𝐴 = 𝐵) | ||
| Theorem | pnncani 11576 | Cancellation law for mixed addition and subtraction. (Contributed by NM, 14-Jan-2006.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) − (𝐴 − 𝐶)) = (𝐵 + 𝐶) | ||
| Theorem | addsub4i 11577 | Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 17-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴 − 𝐶) + (𝐵 − 𝐷)) | ||
| Theorem | 0reALT 11578 | Alternate proof of 0re 11235. (Contributed by NM, 19-Feb-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 0 ∈ ℝ | ||
| Theorem | negcld 11579 | Closure law for negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → -𝐴 ∈ ℂ) | ||
| Theorem | subidd 11580 | Subtraction of a number from itself. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 − 𝐴) = 0) | ||
| Theorem | subid1d 11581 | Identity law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 − 0) = 𝐴) | ||
| Theorem | negidd 11582 | Addition of a number and its negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + -𝐴) = 0) | ||
| Theorem | negnegd 11583 | A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → --𝐴 = 𝐴) | ||
| Theorem | negeq0d 11584 | A number is zero iff its negative is zero. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 = 0 ↔ -𝐴 = 0)) | ||
| Theorem | negne0bd 11585 | A number is nonzero iff its negative is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 ≠ 0 ↔ -𝐴 ≠ 0)) | ||
| Theorem | negcon1d 11586 | Contraposition law for unary minus. Deduction form of negcon1 11533. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴)) | ||
| Theorem | negcon1ad 11587 | Contraposition law for unary minus. One-way deduction form of negcon1 11533. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → -𝐴 = 𝐵) ⇒ ⊢ (𝜑 → -𝐵 = 𝐴) | ||
| Theorem | neg11ad 11588 | The negatives of two complex numbers are equal iff they are equal. Deduction form of neg11 11532. Generalization of neg11d 11604. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (-𝐴 = -𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | negned 11589 | If two complex numbers are unequal, so are their negatives. Contrapositive of neg11d 11604. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → -𝐴 ≠ -𝐵) | ||
| Theorem | negne0d 11590 | The negative of a nonzero number is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → -𝐴 ≠ 0) | ||
| Theorem | negrebd 11591 | The negative of a real is real. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → -𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | subcld 11592 | Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) | ||
| Theorem | pncand 11593 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐵) = 𝐴) | ||
| Theorem | pncan2d 11594 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐴) = 𝐵) | ||
| Theorem | pncan3d 11595 | Subtraction and addition of equals. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + (𝐵 − 𝐴)) = 𝐵) | ||
| Theorem | npcand 11596 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) + 𝐵) = 𝐴) | ||
| Theorem | nncand 11597 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) | ||
| Theorem | negsubd 11598 | Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | ||
| Theorem | subnegd 11599 | Relationship between subtraction and negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵)) | ||
| Theorem | subeq0d 11600 | If the difference between two numbers is zero, they are equal. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 − 𝐵) = 0) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |