Home | Metamath
Proof Explorer Theorem List (p. 116 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ltsubaddd 11501 | 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 + 𝐵))) | ||
Theorem | lesubaddd 11502 | 'Less than or equal to' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 + 𝐵))) | ||
Theorem | ltsubadd2d 11503 | 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) < 𝐶 ↔ 𝐴 < (𝐵 + 𝐶))) | ||
Theorem | lesubadd2d 11504 | 'Less than or equal to' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐵 + 𝐶))) | ||
Theorem | ltaddsubd 11505 | 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 − 𝐵))) | ||
Theorem | ltaddsub2d 11506 | 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 29-Dec-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) < 𝐶 ↔ 𝐵 < (𝐶 − 𝐴))) | ||
Theorem | leaddsub2d 11507 | 'Less than or equal to' relationship between and addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) ≤ 𝐶 ↔ 𝐵 ≤ (𝐶 − 𝐴))) | ||
Theorem | subled 11508 | Swap subtrahends in an inequality. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (𝐴 − 𝐵) ≤ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) ≤ 𝐵) | ||
Theorem | lesubd 11509 | Swap subtrahends in an inequality. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ (𝐵 − 𝐶)) ⇒ ⊢ (𝜑 → 𝐶 ≤ (𝐵 − 𝐴)) | ||
Theorem | ltsub23d 11510 | 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (𝐴 − 𝐵) < 𝐶) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) < 𝐵) | ||
Theorem | ltsub13d 11511 | 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < (𝐵 − 𝐶)) ⇒ ⊢ (𝜑 → 𝐶 < (𝐵 − 𝐴)) | ||
Theorem | lesub1d 11512 | Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 − 𝐶) ≤ (𝐵 − 𝐶))) | ||
Theorem | lesub2d 11513 | Subtraction of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐶 − 𝐵) ≤ (𝐶 − 𝐴))) | ||
Theorem | ltsub1d 11514 | Subtraction from both sides of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 − 𝐶) < (𝐵 − 𝐶))) | ||
Theorem | ltsub2d 11515 | Subtraction of both sides of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 − 𝐵) < (𝐶 − 𝐴))) | ||
Theorem | ltadd1dd 11516 | Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐴 + 𝐶) < (𝐵 + 𝐶)) | ||
Theorem | ltsub1dd 11517 | Subtraction from both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) < (𝐵 − 𝐶)) | ||
Theorem | ltsub2dd 11518 | Subtraction of both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐶 − 𝐵) < (𝐶 − 𝐴)) | ||
Theorem | leadd1dd 11519 | Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 + 𝐶) ≤ (𝐵 + 𝐶)) | ||
Theorem | leadd2dd 11520 | Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) | ||
Theorem | lesub1dd 11521 | Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) ≤ (𝐵 − 𝐶)) | ||
Theorem | lesub2dd 11522 | Subtraction of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 − 𝐵) ≤ (𝐶 − 𝐴)) | ||
Theorem | lesub3d 11523 | The result of subtracting a number less than or equal to an intermediate number from a number greater than or equal to a third number increased by the intermediate number is greater than or equal to the third number. (Contributed by AV, 13-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → (𝑋 + 𝐶) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ≤ 𝑋) ⇒ ⊢ (𝜑 → 𝐶 ≤ (𝐴 − 𝐵)) | ||
Theorem | le2addd 11524 | Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐵 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)) | ||
Theorem | le2subd 11525 | Subtracting both sides of two 'less than or equal to' relations. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐵 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 − 𝐷) ≤ (𝐶 − 𝐵)) | ||
Theorem | ltleaddd 11526 | Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐶) & ⊢ (𝜑 → 𝐵 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) | ||
Theorem | leltaddd 11527 | Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐵 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) | ||
Theorem | lt2addd 11528 | Adding both side of two inequalities. Theorem I.25 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐶) & ⊢ (𝜑 → 𝐵 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) | ||
Theorem | lt2subd 11529 | Subtracting both sides of two 'less than' relations. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐶) & ⊢ (𝜑 → 𝐵 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 − 𝐷) < (𝐶 − 𝐵)) | ||
Theorem | possumd 11530 | Condition for a positive sum. (Contributed by Scott Fenton, 16-Dec-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (0 < (𝐴 + 𝐵) ↔ -𝐵 < 𝐴)) | ||
Theorem | sublt0d 11531 | When a subtraction gives a negative result. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) < 0 ↔ 𝐴 < 𝐵)) | ||
Theorem | ltaddsublt 11532 | Addition and subtraction on one side of 'less than'. (Contributed by AV, 24-Nov-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 ↔ ((𝐴 + 𝐵) − 𝐶) < 𝐴)) | ||
Theorem | 1le1 11533 | One is less than or equal to one. (Contributed by David A. Wheeler, 16-Jul-2016.) |
⊢ 1 ≤ 1 | ||
Theorem | ixi 11534 | i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ (i · i) = -1 | ||
Theorem | recextlem1 11535 | Lemma for recex 11537. (Contributed by Eric Schmidt, 23-May-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵))) | ||
Theorem | recextlem2 11536 | Lemma for recex 11537. (Contributed by Eric Schmidt, 23-May-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) ≠ 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) ≠ 0) | ||
Theorem | recex 11537* | Existence of reciprocal of nonzero complex number. (Contributed by Eric Schmidt, 22-May-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1) | ||
Theorem | mulcand 11538 | Cancellation law for multiplication. Theorem I.7 of [Apostol] p. 18. (Contributed by NM, 26-Jan-1995.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | mulcan2d 11539 | Cancellation law for multiplication. Theorem I.7 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | mulcanad 11540 | Cancellation of a nonzero factor on the left in an equation. One-way deduction form of mulcand 11538. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) & ⊢ (𝜑 → (𝐶 · 𝐴) = (𝐶 · 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | mulcan2ad 11541 | Cancellation of a nonzero factor on the right in an equation. One-way deduction form of mulcan2d 11539. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) & ⊢ (𝜑 → (𝐴 · 𝐶) = (𝐵 · 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | mulcan 11542 | Cancellation law for multiplication (full theorem form). Theorem I.7 of [Apostol] p. 18. (Contributed by NM, 29-Jan-1995.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | mulcan2 11543 | Cancellation law for multiplication. (Contributed by NM, 21-Jan-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | mulcani 11544 | Cancellation law for multiplication. Theorem I.7 of [Apostol] p. 18. (Contributed by NM, 26-Jan-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 ≠ 0 ⇒ ⊢ ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵) | ||
Theorem | mul0or 11545 | If a product is zero, one of its factors must be zero. Theorem I.11 of [Apostol] p. 18. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0))) | ||
Theorem | mulne0b 11546 | The product of two nonzero numbers is nonzero. (Contributed by NM, 1-Aug-2004.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) ↔ (𝐴 · 𝐵) ≠ 0)) | ||
Theorem | mulne0 11547 | The product of two nonzero numbers is nonzero. (Contributed by NM, 30-Dec-2007.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ≠ 0) | ||
Theorem | mulne0i 11548 | The product of two nonzero numbers is nonzero. (Contributed by NM, 15-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐴 ≠ 0 & ⊢ 𝐵 ≠ 0 ⇒ ⊢ (𝐴 · 𝐵) ≠ 0 | ||
Theorem | muleqadd 11549 | Property of numbers whose product equals their sum. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 13-Nov-2006.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = (𝐴 + 𝐵) ↔ ((𝐴 − 1) · (𝐵 − 1)) = 1)) | ||
Theorem | receu 11550* | Existential uniqueness of reciprocals. Theorem I.8 of [Apostol] p. 18. (Contributed by NM, 29-Jan-1995.) (Revised by Mario Carneiro, 17-Feb-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) | ||
Theorem | mulnzcnopr 11551 | Multiplication maps nonzero complex numbers to nonzero complex numbers. (Contributed by Steve Rodriguez, 23-Feb-2007.) |
⊢ ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) | ||
Theorem | msq0i 11552 | A number is zero iff its square is zero (where square is represented using multiplication). (Contributed by NM, 28-Jul-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ ((𝐴 · 𝐴) = 0 ↔ 𝐴 = 0) | ||
Theorem | mul0ori 11553 | If a product is zero, one of its factors must be zero. Theorem I.11 of [Apostol] p. 18. (Contributed by NM, 7-Oct-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0)) | ||
Theorem | msq0d 11554 | A number is zero iff its square is zero (where square is represented using multiplication). (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐴) = 0 ↔ 𝐴 = 0)) | ||
Theorem | mul0ord 11555 | If a product is zero, one of its factors must be zero. Theorem I.11 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0))) | ||
Theorem | mulne0bd 11556 | The product of two nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) ↔ (𝐴 · 𝐵) ≠ 0)) | ||
Theorem | mulne0d 11557 | The product of two nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ≠ 0) | ||
Theorem | mulcan1g 11558 | A generalized form of the cancellation law for multiplication. (Contributed by Scott Fenton, 17-Jun-2013.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) = (𝐴 · 𝐶) ↔ (𝐴 = 0 ∨ 𝐵 = 𝐶))) | ||
Theorem | mulcan2g 11559 | A generalized form of the cancellation law for multiplication. (Contributed by Scott Fenton, 17-Jun-2013.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ (𝐴 = 𝐵 ∨ 𝐶 = 0))) | ||
Theorem | mulne0bad 11560 | A factor of a nonzero complex number is nonzero. Partial converse of mulne0d 11557 and consequence of mulne0bd 11556. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 · 𝐵) ≠ 0) ⇒ ⊢ (𝜑 → 𝐴 ≠ 0) | ||
Theorem | mulne0bbd 11561 | A factor of a nonzero complex number is nonzero. Partial converse of mulne0d 11557 and consequence of mulne0bd 11556. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 · 𝐵) ≠ 0) ⇒ ⊢ (𝜑 → 𝐵 ≠ 0) | ||
Syntax | cdiv 11562 | Extend class notation to include division. |
class / | ||
Definition | df-div 11563* | Define division. Theorem divmuli 11659 relates it to multiplication, and divcli 11647 and redivcli 11672 prove its closure laws. (Contributed by NM, 2-Feb-1995.) Use divval 11565 instead. (Revised by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.) |
⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | ||
Theorem | 1div0 11564 | You can't divide by zero, because division explicitly excludes zero from the domain of the function. Thus, by the definition of function value, it evaluates to the empty set. (This theorem is for information only and normally is not referenced by other proofs. To be meaningful, it assumes that ∅ is not a complex number, which depends on the particular complex number construction that is used.) (Contributed by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.) |
⊢ (1 / 0) = ∅ | ||
Theorem | divval 11565* | Value of division: if 𝐴 and 𝐵 are complex numbers with 𝐵 nonzero, then (𝐴 / 𝐵) is the (unique) complex number such that (𝐵 · 𝑥) = 𝐴. (Contributed by NM, 8-May-1999.) (Revised by Mario Carneiro, 17-Feb-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) | ||
Theorem | divmul 11566 | Relationship between division and multiplication. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 17-Feb-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴)) | ||
Theorem | divmul2 11567 | Relationship between division and multiplication. (Contributed by NM, 7-Feb-2006.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ 𝐴 = (𝐶 · 𝐵))) | ||
Theorem | divmul3 11568 | Relationship between division and multiplication. (Contributed by NM, 13-Feb-2006.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ 𝐴 = (𝐵 · 𝐶))) | ||
Theorem | divcl 11569 | Closure law for division. (Contributed by NM, 21-Jul-2001.) (Proof shortened by Mario Carneiro, 17-Feb-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℂ) | ||
Theorem | reccl 11570 | Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ) | ||
Theorem | divcan2 11571 | A cancellation law for division. (Contributed by NM, 3-Feb-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴) | ||
Theorem | divcan1 11572 | A cancellation law for division. (Contributed by NM, 5-Jun-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) · 𝐵) = 𝐴) | ||
Theorem | diveq0 11573 | A ratio is zero iff the numerator is zero. (Contributed by NM, 20-Apr-2006.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) = 0 ↔ 𝐴 = 0)) | ||
Theorem | divne0b 11574 | The ratio of nonzero numbers is nonzero. (Contributed by NM, 2-Aug-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 ≠ 0 ↔ (𝐴 / 𝐵) ≠ 0)) | ||
Theorem | divne0 11575 | The ratio of nonzero numbers is nonzero. (Contributed by NM, 28-Dec-2007.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ≠ 0) | ||
Theorem | recne0 11576 | The reciprocal of a nonzero number is nonzero. (Contributed by NM, 9-Feb-2006.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ≠ 0) | ||
Theorem | recid 11577 | Multiplication of a number and its reciprocal. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 · (1 / 𝐴)) = 1) | ||
Theorem | recid2 11578 | Multiplication of a number and its reciprocal. (Contributed by NM, 22-Jun-2006.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 𝐴) = 1) | ||
Theorem | divrec 11579 | Relationship between division and reciprocal. Theorem I.9 of [Apostol] p. 18. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) | ||
Theorem | divrec2 11580 | Relationship between division and reciprocal. (Contributed by NM, 7-Feb-2006.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) | ||
Theorem | divass 11581 | An associative law for division. (Contributed by NM, 2-Aug-2004.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶))) | ||
Theorem | div23 11582 | A commutative/associative law for division. (Contributed by NM, 2-Aug-2004.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) | ||
Theorem | div32 11583 | A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℂ) → ((𝐴 / 𝐵) · 𝐶) = (𝐴 · (𝐶 / 𝐵))) | ||
Theorem | div13 11584 | A commutative/associative law for division. (Contributed by NM, 22-Apr-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℂ) → ((𝐴 / 𝐵) · 𝐶) = ((𝐶 / 𝐵) · 𝐴)) | ||
Theorem | div12 11585 | A commutative/associative law for division. (Contributed by NM, 30-Apr-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 · (𝐵 / 𝐶)) = (𝐵 · (𝐴 / 𝐶))) | ||
Theorem | divmulass 11586 | An associative law for division and multiplication. (Contributed by AV, 10-Jul-2021.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐴 · (𝐵 / 𝐷)) · 𝐶) = ((𝐴 · 𝐵) · (𝐶 / 𝐷))) | ||
Theorem | divmulasscom 11587 | An associative/commutative law for division and multiplication. (Contributed by AV, 10-Jul-2021.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐴 · (𝐵 / 𝐷)) · 𝐶) = (𝐵 · ((𝐴 · 𝐶) / 𝐷))) | ||
Theorem | divdir 11588 | Distribution of division over addition. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶))) | ||
Theorem | divcan3 11589 | A cancellation law for division. (Contributed by NM, 3-Feb-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐵 · 𝐴) / 𝐵) = 𝐴) | ||
Theorem | divcan4 11590 | A cancellation law for division. (Contributed by NM, 8-Feb-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) / 𝐵) = 𝐴) | ||
Theorem | div11 11591 | One-to-one relationship for division. (Contributed by NM, 20-Apr-2006.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = (𝐵 / 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | divid 11592 | A number divided by itself is one. (Contributed by NM, 1-Aug-2004.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = 1) | ||
Theorem | div0 11593 | Division into zero is zero. (Contributed by NM, 14-Mar-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0 / 𝐴) = 0) | ||
Theorem | div1 11594 | A number divided by 1 is itself. (Contributed by NM, 9-Jan-2002.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) | ||
Theorem | 1div1e1 11595 | 1 divided by 1 is 1. (Contributed by David A. Wheeler, 7-Dec-2018.) |
⊢ (1 / 1) = 1 | ||
Theorem | diveq1 11596 | Equality in terms of unit ratio. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) = 1 ↔ 𝐴 = 𝐵)) | ||
Theorem | divneg 11597 | Move negative sign inside of a division. (Contributed by NM, 17-Sep-2004.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → -(𝐴 / 𝐵) = (-𝐴 / 𝐵)) | ||
Theorem | muldivdir 11598 | Distribution of division over addition with a multiplication. (Contributed by AV, 1-Jul-2021.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶 · 𝐴) + 𝐵) / 𝐶) = (𝐴 + (𝐵 / 𝐶))) | ||
Theorem | divsubdir 11599 | Distribution of division over subtraction. (Contributed by NM, 4-Mar-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 − 𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶))) | ||
Theorem | subdivcomb1 11600 | Bring a term in a subtraction into the numerator. (Contributed by Scott Fenton, 3-Jul-2013.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶 · 𝐴) − 𝐵) / 𝐶) = (𝐴 − (𝐵 / 𝐶))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |