Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nlpfvineqsn | Structured version Visualization version GIF version |
Description: Given a subset 𝐴 of 𝑋 with no limit points, there exists a function from each point 𝑝 of 𝐴 to an open set intersecting 𝐴 only at 𝑝. This proof uses the axiom of choice. (Contributed by ML, 23-Mar-2021.) |
Ref | Expression |
---|---|
nlpineqsn.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
nlpfvineqsn | ⊢ (𝐴 ∈ 𝑉 → ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑓(𝑓:𝐴⟶𝐽 ∧ ∀𝑝 ∈ 𝐴 ((𝑓‘𝑝) ∩ 𝐴) = {𝑝}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlpineqsn.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | nlpineqsn 35579 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝})) |
3 | simpr 485 | . . . . 5 ⊢ ((𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}) → (𝑛 ∩ 𝐴) = {𝑝}) | |
4 | 3 | reximi 3178 | . . . 4 ⊢ (∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}) → ∃𝑛 ∈ 𝐽 (𝑛 ∩ 𝐴) = {𝑝}) |
5 | 4 | ralimi 3087 | . . 3 ⊢ (∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}) → ∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑛 ∩ 𝐴) = {𝑝}) |
6 | 2, 5 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑛 ∩ 𝐴) = {𝑝}) |
7 | ineq1 4139 | . . . 4 ⊢ (𝑛 = (𝑓‘𝑝) → (𝑛 ∩ 𝐴) = ((𝑓‘𝑝) ∩ 𝐴)) | |
8 | 7 | eqeq1d 2740 | . . 3 ⊢ (𝑛 = (𝑓‘𝑝) → ((𝑛 ∩ 𝐴) = {𝑝} ↔ ((𝑓‘𝑝) ∩ 𝐴) = {𝑝})) |
9 | 8 | ac6sg 10244 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑛 ∩ 𝐴) = {𝑝} → ∃𝑓(𝑓:𝐴⟶𝐽 ∧ ∀𝑝 ∈ 𝐴 ((𝑓‘𝑝) ∩ 𝐴) = {𝑝}))) |
10 | 6, 9 | syl5 34 | 1 ⊢ (𝐴 ∈ 𝑉 → ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑓(𝑓:𝐴⟶𝐽 ∧ ∀𝑝 ∈ 𝐴 ((𝑓‘𝑝) ∩ 𝐴) = {𝑝}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 {csn 4561 ∪ cuni 4839 ⟶wf 6429 ‘cfv 6433 Topctop 22042 limPtclp 22285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-reg 9351 ax-inf2 9399 ax-ac2 10219 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-en 8734 df-r1 9522 df-rank 9523 df-card 9697 df-ac 9872 df-top 22043 df-cld 22170 df-ntr 22171 df-cls 22172 df-lp 22287 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |