Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlpfvineqsn Structured version   Visualization version   GIF version

Theorem nlpfvineqsn 34718
Description: Given a subset 𝐴 of 𝑋 with no limit points, there exists a function from each point 𝑝 of 𝐴 to an open set intersecting 𝐴 only at 𝑝. This proof uses the axiom of choice. (Contributed by ML, 23-Mar-2021.)
Hypothesis
Ref Expression
nlpineqsn.x 𝑋 = 𝐽
Assertion
Ref Expression
nlpfvineqsn (𝐴𝑉 → ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑓(𝑓:𝐴𝐽 ∧ ∀𝑝𝐴 ((𝑓𝑝) ∩ 𝐴) = {𝑝})))
Distinct variable groups:   𝐴,𝑝   𝐽,𝑝   𝑋,𝑝   𝐴,𝑓,𝑝   𝑓,𝐽
Allowed substitution hints:   𝑉(𝑓,𝑝)   𝑋(𝑓)

Proof of Theorem nlpfvineqsn
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nlpineqsn.x . . . 4 𝑋 = 𝐽
21nlpineqsn 34717 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝𝐴𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}))
3 simpr 487 . . . . 5 ((𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}) → (𝑛𝐴) = {𝑝})
43reximi 3242 . . . 4 (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}) → ∃𝑛𝐽 (𝑛𝐴) = {𝑝})
54ralimi 3159 . . 3 (∀𝑝𝐴𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}) → ∀𝑝𝐴𝑛𝐽 (𝑛𝐴) = {𝑝})
62, 5syl 17 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝𝐴𝑛𝐽 (𝑛𝐴) = {𝑝})
7 ineq1 4174 . . . 4 (𝑛 = (𝑓𝑝) → (𝑛𝐴) = ((𝑓𝑝) ∩ 𝐴))
87eqeq1d 2822 . . 3 (𝑛 = (𝑓𝑝) → ((𝑛𝐴) = {𝑝} ↔ ((𝑓𝑝) ∩ 𝐴) = {𝑝}))
98ac6sg 9903 . 2 (𝐴𝑉 → (∀𝑝𝐴𝑛𝐽 (𝑛𝐴) = {𝑝} → ∃𝑓(𝑓:𝐴𝐽 ∧ ∀𝑝𝐴 ((𝑓𝑝) ∩ 𝐴) = {𝑝})))
106, 9syl5 34 1 (𝐴𝑉 → ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑓(𝑓:𝐴𝐽 ∧ ∀𝑝𝐴 ((𝑓𝑝) ∩ 𝐴) = {𝑝})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1536  wex 1779  wcel 2113  wral 3137  wrex 3138  cin 3928  wss 3929  c0 4284  {csn 4560   cuni 4831  wf 6344  cfv 6348  Topctop 21494  limPtclp 21735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-reg 9049  ax-inf2 9097  ax-ac2 9878
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7107  df-om 7574  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-en 8503  df-r1 9186  df-rank 9187  df-card 9361  df-ac 9535  df-top 21495  df-cld 21620  df-ntr 21621  df-cls 21622  df-lp 21737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator