Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nlpfvineqsn | Structured version Visualization version GIF version |
Description: Given a subset 𝐴 of 𝑋 with no limit points, there exists a function from each point 𝑝 of 𝐴 to an open set intersecting 𝐴 only at 𝑝. This proof uses the axiom of choice. (Contributed by ML, 23-Mar-2021.) |
Ref | Expression |
---|---|
nlpineqsn.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
nlpfvineqsn | ⊢ (𝐴 ∈ 𝑉 → ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑓(𝑓:𝐴⟶𝐽 ∧ ∀𝑝 ∈ 𝐴 ((𝑓‘𝑝) ∩ 𝐴) = {𝑝}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlpineqsn.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | nlpineqsn 35105 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝})) |
3 | simpr 488 | . . . . 5 ⊢ ((𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}) → (𝑛 ∩ 𝐴) = {𝑝}) | |
4 | 3 | reximi 3171 | . . . 4 ⊢ (∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}) → ∃𝑛 ∈ 𝐽 (𝑛 ∩ 𝐴) = {𝑝}) |
5 | 4 | ralimi 3092 | . . 3 ⊢ (∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}) → ∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑛 ∩ 𝐴) = {𝑝}) |
6 | 2, 5 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑛 ∩ 𝐴) = {𝑝}) |
7 | ineq1 4109 | . . . 4 ⊢ (𝑛 = (𝑓‘𝑝) → (𝑛 ∩ 𝐴) = ((𝑓‘𝑝) ∩ 𝐴)) | |
8 | 7 | eqeq1d 2760 | . . 3 ⊢ (𝑛 = (𝑓‘𝑝) → ((𝑛 ∩ 𝐴) = {𝑝} ↔ ((𝑓‘𝑝) ∩ 𝐴) = {𝑝})) |
9 | 8 | ac6sg 9948 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑛 ∩ 𝐴) = {𝑝} → ∃𝑓(𝑓:𝐴⟶𝐽 ∧ ∀𝑝 ∈ 𝐴 ((𝑓‘𝑝) ∩ 𝐴) = {𝑝}))) |
10 | 6, 9 | syl5 34 | 1 ⊢ (𝐴 ∈ 𝑉 → ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑓(𝑓:𝐴⟶𝐽 ∧ ∀𝑝 ∈ 𝐴 ((𝑓‘𝑝) ∩ 𝐴) = {𝑝}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∃wex 1781 ∈ wcel 2111 ∀wral 3070 ∃wrex 3071 ∩ cin 3857 ⊆ wss 3858 ∅c0 4225 {csn 4522 ∪ cuni 4798 ⟶wf 6331 ‘cfv 6335 Topctop 21593 limPtclp 21834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-reg 9089 ax-inf2 9137 ax-ac2 9923 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-iin 4886 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-en 8528 df-r1 9226 df-rank 9227 df-card 9401 df-ac 9576 df-top 21594 df-cld 21719 df-ntr 21720 df-cls 21721 df-lp 21836 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |