| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nlpfvineqsn | Structured version Visualization version GIF version | ||
| Description: Given a subset 𝐴 of 𝑋 with no limit points, there exists a function from each point 𝑝 of 𝐴 to an open set intersecting 𝐴 only at 𝑝. This proof uses the axiom of choice. (Contributed by ML, 23-Mar-2021.) |
| Ref | Expression |
|---|---|
| nlpineqsn.x | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| nlpfvineqsn | ⊢ (𝐴 ∈ 𝑉 → ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑓(𝑓:𝐴⟶𝐽 ∧ ∀𝑝 ∈ 𝐴 ((𝑓‘𝑝) ∩ 𝐴) = {𝑝}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlpineqsn.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | nlpineqsn 37431 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝})) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}) → (𝑛 ∩ 𝐴) = {𝑝}) | |
| 4 | 3 | reximi 3075 | . . . 4 ⊢ (∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}) → ∃𝑛 ∈ 𝐽 (𝑛 ∩ 𝐴) = {𝑝}) |
| 5 | 4 | ralimi 3074 | . . 3 ⊢ (∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}) → ∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑛 ∩ 𝐴) = {𝑝}) |
| 6 | 2, 5 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑛 ∩ 𝐴) = {𝑝}) |
| 7 | ineq1 4193 | . . . 4 ⊢ (𝑛 = (𝑓‘𝑝) → (𝑛 ∩ 𝐴) = ((𝑓‘𝑝) ∩ 𝐴)) | |
| 8 | 7 | eqeq1d 2738 | . . 3 ⊢ (𝑛 = (𝑓‘𝑝) → ((𝑛 ∩ 𝐴) = {𝑝} ↔ ((𝑓‘𝑝) ∩ 𝐴) = {𝑝})) |
| 9 | 8 | ac6sg 10507 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑛 ∩ 𝐴) = {𝑝} → ∃𝑓(𝑓:𝐴⟶𝐽 ∧ ∀𝑝 ∈ 𝐴 ((𝑓‘𝑝) ∩ 𝐴) = {𝑝}))) |
| 10 | 6, 9 | syl5 34 | 1 ⊢ (𝐴 ∈ 𝑉 → ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑓(𝑓:𝐴⟶𝐽 ∧ ∀𝑝 ∈ 𝐴 ((𝑓‘𝑝) ∩ 𝐴) = {𝑝}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 {csn 4606 ∪ cuni 4888 ⟶wf 6532 ‘cfv 6536 Topctop 22836 limPtclp 23077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-reg 9611 ax-inf2 9660 ax-ac2 10482 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-en 8965 df-r1 9783 df-rank 9784 df-card 9958 df-ac 10135 df-top 22837 df-cld 22962 df-ntr 22963 df-cls 22964 df-lp 23079 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |