![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nlpfvineqsn | Structured version Visualization version GIF version |
Description: Given a subset π΄ of π with no limit points, there exists a function from each point π of π΄ to an open set intersecting π΄ only at π. This proof uses the axiom of choice. (Contributed by ML, 23-Mar-2021.) |
Ref | Expression |
---|---|
nlpineqsn.x | β’ π = βͺ π½ |
Ref | Expression |
---|---|
nlpfvineqsn | β’ (π΄ β π β ((π½ β Top β§ π΄ β π β§ ((limPtβπ½)βπ΄) = β ) β βπ(π:π΄βΆπ½ β§ βπ β π΄ ((πβπ) β© π΄) = {π}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlpineqsn.x | . . . 4 β’ π = βͺ π½ | |
2 | 1 | nlpineqsn 36779 | . . 3 β’ ((π½ β Top β§ π΄ β π β§ ((limPtβπ½)βπ΄) = β ) β βπ β π΄ βπ β π½ (π β π β§ (π β© π΄) = {π})) |
3 | simpr 484 | . . . . 5 β’ ((π β π β§ (π β© π΄) = {π}) β (π β© π΄) = {π}) | |
4 | 3 | reximi 3076 | . . . 4 β’ (βπ β π½ (π β π β§ (π β© π΄) = {π}) β βπ β π½ (π β© π΄) = {π}) |
5 | 4 | ralimi 3075 | . . 3 β’ (βπ β π΄ βπ β π½ (π β π β§ (π β© π΄) = {π}) β βπ β π΄ βπ β π½ (π β© π΄) = {π}) |
6 | 2, 5 | syl 17 | . 2 β’ ((π½ β Top β§ π΄ β π β§ ((limPtβπ½)βπ΄) = β ) β βπ β π΄ βπ β π½ (π β© π΄) = {π}) |
7 | ineq1 4197 | . . . 4 β’ (π = (πβπ) β (π β© π΄) = ((πβπ) β© π΄)) | |
8 | 7 | eqeq1d 2726 | . . 3 β’ (π = (πβπ) β ((π β© π΄) = {π} β ((πβπ) β© π΄) = {π})) |
9 | 8 | ac6sg 10479 | . 2 β’ (π΄ β π β (βπ β π΄ βπ β π½ (π β© π΄) = {π} β βπ(π:π΄βΆπ½ β§ βπ β π΄ ((πβπ) β© π΄) = {π}))) |
10 | 6, 9 | syl5 34 | 1 β’ (π΄ β π β ((π½ β Top β§ π΄ β π β§ ((limPtβπ½)βπ΄) = β ) β βπ(π:π΄βΆπ½ β§ βπ β π΄ ((πβπ) β© π΄) = {π}))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 βwex 1773 β wcel 2098 βwral 3053 βwrex 3062 β© cin 3939 β wss 3940 β c0 4314 {csn 4620 βͺ cuni 4899 βΆwf 6529 βcfv 6533 Topctop 22717 limPtclp 22960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-reg 9583 ax-inf2 9632 ax-ac2 10454 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-en 8936 df-r1 9755 df-rank 9756 df-card 9930 df-ac 10107 df-top 22718 df-cld 22845 df-ntr 22846 df-cls 22847 df-lp 22962 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |