Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlpfvineqsn Structured version   Visualization version   GIF version

Theorem nlpfvineqsn 37392
Description: Given a subset 𝐴 of 𝑋 with no limit points, there exists a function from each point 𝑝 of 𝐴 to an open set intersecting 𝐴 only at 𝑝. This proof uses the axiom of choice. (Contributed by ML, 23-Mar-2021.)
Hypothesis
Ref Expression
nlpineqsn.x 𝑋 = 𝐽
Assertion
Ref Expression
nlpfvineqsn (𝐴𝑉 → ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑓(𝑓:𝐴𝐽 ∧ ∀𝑝𝐴 ((𝑓𝑝) ∩ 𝐴) = {𝑝})))
Distinct variable groups:   𝐴,𝑝   𝐽,𝑝   𝑋,𝑝   𝐴,𝑓,𝑝   𝑓,𝐽
Allowed substitution hints:   𝑉(𝑓,𝑝)   𝑋(𝑓)

Proof of Theorem nlpfvineqsn
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nlpineqsn.x . . . 4 𝑋 = 𝐽
21nlpineqsn 37391 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝𝐴𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}))
3 simpr 484 . . . . 5 ((𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}) → (𝑛𝐴) = {𝑝})
43reximi 3082 . . . 4 (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}) → ∃𝑛𝐽 (𝑛𝐴) = {𝑝})
54ralimi 3081 . . 3 (∀𝑝𝐴𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}) → ∀𝑝𝐴𝑛𝐽 (𝑛𝐴) = {𝑝})
62, 5syl 17 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝𝐴𝑛𝐽 (𝑛𝐴) = {𝑝})
7 ineq1 4221 . . . 4 (𝑛 = (𝑓𝑝) → (𝑛𝐴) = ((𝑓𝑝) ∩ 𝐴))
87eqeq1d 2737 . . 3 (𝑛 = (𝑓𝑝) → ((𝑛𝐴) = {𝑝} ↔ ((𝑓𝑝) ∩ 𝐴) = {𝑝}))
98ac6sg 10526 . 2 (𝐴𝑉 → (∀𝑝𝐴𝑛𝐽 (𝑛𝐴) = {𝑝} → ∃𝑓(𝑓:𝐴𝐽 ∧ ∀𝑝𝐴 ((𝑓𝑝) ∩ 𝐴) = {𝑝})))
106, 9syl5 34 1 (𝐴𝑉 → ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑓(𝑓:𝐴𝐽 ∧ ∀𝑝𝐴 ((𝑓𝑝) ∩ 𝐴) = {𝑝})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wral 3059  wrex 3068  cin 3962  wss 3963  c0 4339  {csn 4631   cuni 4912  wf 6559  cfv 6563  Topctop 22915  limPtclp 23158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-reg 9630  ax-inf2 9679  ax-ac2 10501
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-en 8985  df-r1 9802  df-rank 9803  df-card 9977  df-ac 10154  df-top 22916  df-cld 23043  df-ntr 23044  df-cls 23045  df-lp 23160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator