Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlpfvineqsn Structured version   Visualization version   GIF version

Theorem nlpfvineqsn 37453
Description: Given a subset 𝐴 of 𝑋 with no limit points, there exists a function from each point 𝑝 of 𝐴 to an open set intersecting 𝐴 only at 𝑝. This proof uses the axiom of choice. (Contributed by ML, 23-Mar-2021.)
Hypothesis
Ref Expression
nlpineqsn.x 𝑋 = 𝐽
Assertion
Ref Expression
nlpfvineqsn (𝐴𝑉 → ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑓(𝑓:𝐴𝐽 ∧ ∀𝑝𝐴 ((𝑓𝑝) ∩ 𝐴) = {𝑝})))
Distinct variable groups:   𝐴,𝑝   𝐽,𝑝   𝑋,𝑝   𝐴,𝑓,𝑝   𝑓,𝐽
Allowed substitution hints:   𝑉(𝑓,𝑝)   𝑋(𝑓)

Proof of Theorem nlpfvineqsn
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nlpineqsn.x . . . 4 𝑋 = 𝐽
21nlpineqsn 37452 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝𝐴𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}))
3 simpr 484 . . . . 5 ((𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}) → (𝑛𝐴) = {𝑝})
43reximi 3070 . . . 4 (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}) → ∃𝑛𝐽 (𝑛𝐴) = {𝑝})
54ralimi 3069 . . 3 (∀𝑝𝐴𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}) → ∀𝑝𝐴𝑛𝐽 (𝑛𝐴) = {𝑝})
62, 5syl 17 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝𝐴𝑛𝐽 (𝑛𝐴) = {𝑝})
7 ineq1 4160 . . . 4 (𝑛 = (𝑓𝑝) → (𝑛𝐴) = ((𝑓𝑝) ∩ 𝐴))
87eqeq1d 2733 . . 3 (𝑛 = (𝑓𝑝) → ((𝑛𝐴) = {𝑝} ↔ ((𝑓𝑝) ∩ 𝐴) = {𝑝}))
98ac6sg 10379 . 2 (𝐴𝑉 → (∀𝑝𝐴𝑛𝐽 (𝑛𝐴) = {𝑝} → ∃𝑓(𝑓:𝐴𝐽 ∧ ∀𝑝𝐴 ((𝑓𝑝) ∩ 𝐴) = {𝑝})))
106, 9syl5 34 1 (𝐴𝑉 → ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑓(𝑓:𝐴𝐽 ∧ ∀𝑝𝐴 ((𝑓𝑝) ∩ 𝐴) = {𝑝})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  cin 3896  wss 3897  c0 4280  {csn 4573   cuni 4856  wf 6477  cfv 6481  Topctop 22808  limPtclp 23049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-reg 9478  ax-inf2 9531  ax-ac2 10354
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-en 8870  df-r1 9657  df-rank 9658  df-card 9832  df-ac 10007  df-top 22809  df-cld 22934  df-ntr 22935  df-cls 22936  df-lp 23051
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator