![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nlpfvineqsn | Structured version Visualization version GIF version |
Description: Given a subset 𝐴 of 𝑋 with no limit points, there exists a function from each point 𝑝 of 𝐴 to an open set intersecting 𝐴 only at 𝑝. This proof uses the axiom of choice. (Contributed by ML, 23-Mar-2021.) |
Ref | Expression |
---|---|
nlpineqsn.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
nlpfvineqsn | ⊢ (𝐴 ∈ 𝑉 → ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑓(𝑓:𝐴⟶𝐽 ∧ ∀𝑝 ∈ 𝐴 ((𝑓‘𝑝) ∩ 𝐴) = {𝑝}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlpineqsn.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | nlpineqsn 37018 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝})) |
3 | simpr 483 | . . . . 5 ⊢ ((𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}) → (𝑛 ∩ 𝐴) = {𝑝}) | |
4 | 3 | reximi 3073 | . . . 4 ⊢ (∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}) → ∃𝑛 ∈ 𝐽 (𝑛 ∩ 𝐴) = {𝑝}) |
5 | 4 | ralimi 3072 | . . 3 ⊢ (∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}) → ∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑛 ∩ 𝐴) = {𝑝}) |
6 | 2, 5 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑛 ∩ 𝐴) = {𝑝}) |
7 | ineq1 4203 | . . . 4 ⊢ (𝑛 = (𝑓‘𝑝) → (𝑛 ∩ 𝐴) = ((𝑓‘𝑝) ∩ 𝐴)) | |
8 | 7 | eqeq1d 2727 | . . 3 ⊢ (𝑛 = (𝑓‘𝑝) → ((𝑛 ∩ 𝐴) = {𝑝} ↔ ((𝑓‘𝑝) ∩ 𝐴) = {𝑝})) |
9 | 8 | ac6sg 10513 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑛 ∩ 𝐴) = {𝑝} → ∃𝑓(𝑓:𝐴⟶𝐽 ∧ ∀𝑝 ∈ 𝐴 ((𝑓‘𝑝) ∩ 𝐴) = {𝑝}))) |
10 | 6, 9 | syl5 34 | 1 ⊢ (𝐴 ∈ 𝑉 → ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑓(𝑓:𝐴⟶𝐽 ∧ ∀𝑝 ∈ 𝐴 ((𝑓‘𝑝) ∩ 𝐴) = {𝑝}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∀wral 3050 ∃wrex 3059 ∩ cin 3943 ⊆ wss 3944 ∅c0 4322 {csn 4630 ∪ cuni 4909 ⟶wf 6545 ‘cfv 6549 Topctop 22839 limPtclp 23082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-reg 9617 ax-inf2 9666 ax-ac2 10488 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-en 8965 df-r1 9789 df-rank 9790 df-card 9964 df-ac 10141 df-top 22840 df-cld 22967 df-ntr 22968 df-cls 22969 df-lp 23084 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |