Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlpfvineqsn Structured version   Visualization version   GIF version

Theorem nlpfvineqsn 37393
Description: Given a subset 𝐴 of 𝑋 with no limit points, there exists a function from each point 𝑝 of 𝐴 to an open set intersecting 𝐴 only at 𝑝. This proof uses the axiom of choice. (Contributed by ML, 23-Mar-2021.)
Hypothesis
Ref Expression
nlpineqsn.x 𝑋 = 𝐽
Assertion
Ref Expression
nlpfvineqsn (𝐴𝑉 → ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑓(𝑓:𝐴𝐽 ∧ ∀𝑝𝐴 ((𝑓𝑝) ∩ 𝐴) = {𝑝})))
Distinct variable groups:   𝐴,𝑝   𝐽,𝑝   𝑋,𝑝   𝐴,𝑓,𝑝   𝑓,𝐽
Allowed substitution hints:   𝑉(𝑓,𝑝)   𝑋(𝑓)

Proof of Theorem nlpfvineqsn
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nlpineqsn.x . . . 4 𝑋 = 𝐽
21nlpineqsn 37392 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝𝐴𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}))
3 simpr 484 . . . . 5 ((𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}) → (𝑛𝐴) = {𝑝})
43reximi 3067 . . . 4 (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}) → ∃𝑛𝐽 (𝑛𝐴) = {𝑝})
54ralimi 3066 . . 3 (∀𝑝𝐴𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}) → ∀𝑝𝐴𝑛𝐽 (𝑛𝐴) = {𝑝})
62, 5syl 17 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝𝐴𝑛𝐽 (𝑛𝐴) = {𝑝})
7 ineq1 4164 . . . 4 (𝑛 = (𝑓𝑝) → (𝑛𝐴) = ((𝑓𝑝) ∩ 𝐴))
87eqeq1d 2731 . . 3 (𝑛 = (𝑓𝑝) → ((𝑛𝐴) = {𝑝} ↔ ((𝑓𝑝) ∩ 𝐴) = {𝑝}))
98ac6sg 10382 . 2 (𝐴𝑉 → (∀𝑝𝐴𝑛𝐽 (𝑛𝐴) = {𝑝} → ∃𝑓(𝑓:𝐴𝐽 ∧ ∀𝑝𝐴 ((𝑓𝑝) ∩ 𝐴) = {𝑝})))
106, 9syl5 34 1 (𝐴𝑉 → ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑓(𝑓:𝐴𝐽 ∧ ∀𝑝𝐴 ((𝑓𝑝) ∩ 𝐴) = {𝑝})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  cin 3902  wss 3903  c0 4284  {csn 4577   cuni 4858  wf 6478  cfv 6482  Topctop 22778  limPtclp 23019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537  ax-ac2 10357
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-en 8873  df-r1 9660  df-rank 9661  df-card 9835  df-ac 10010  df-top 22779  df-cld 22904  df-ntr 22905  df-cls 22906  df-lp 23021
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator