Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlpfvineqsn Structured version   Visualization version   GIF version

Theorem nlpfvineqsn 37397
Description: Given a subset 𝐴 of 𝑋 with no limit points, there exists a function from each point 𝑝 of 𝐴 to an open set intersecting 𝐴 only at 𝑝. This proof uses the axiom of choice. (Contributed by ML, 23-Mar-2021.)
Hypothesis
Ref Expression
nlpineqsn.x 𝑋 = 𝐽
Assertion
Ref Expression
nlpfvineqsn (𝐴𝑉 → ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑓(𝑓:𝐴𝐽 ∧ ∀𝑝𝐴 ((𝑓𝑝) ∩ 𝐴) = {𝑝})))
Distinct variable groups:   𝐴,𝑝   𝐽,𝑝   𝑋,𝑝   𝐴,𝑓,𝑝   𝑓,𝐽
Allowed substitution hints:   𝑉(𝑓,𝑝)   𝑋(𝑓)

Proof of Theorem nlpfvineqsn
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nlpineqsn.x . . . 4 𝑋 = 𝐽
21nlpineqsn 37396 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝𝐴𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}))
3 simpr 484 . . . . 5 ((𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}) → (𝑛𝐴) = {𝑝})
43reximi 3067 . . . 4 (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}) → ∃𝑛𝐽 (𝑛𝐴) = {𝑝})
54ralimi 3066 . . 3 (∀𝑝𝐴𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}) → ∀𝑝𝐴𝑛𝐽 (𝑛𝐴) = {𝑝})
62, 5syl 17 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝𝐴𝑛𝐽 (𝑛𝐴) = {𝑝})
7 ineq1 4176 . . . 4 (𝑛 = (𝑓𝑝) → (𝑛𝐴) = ((𝑓𝑝) ∩ 𝐴))
87eqeq1d 2731 . . 3 (𝑛 = (𝑓𝑝) → ((𝑛𝐴) = {𝑝} ↔ ((𝑓𝑝) ∩ 𝐴) = {𝑝}))
98ac6sg 10441 . 2 (𝐴𝑉 → (∀𝑝𝐴𝑛𝐽 (𝑛𝐴) = {𝑝} → ∃𝑓(𝑓:𝐴𝐽 ∧ ∀𝑝𝐴 ((𝑓𝑝) ∩ 𝐴) = {𝑝})))
106, 9syl5 34 1 (𝐴𝑉 → ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑓(𝑓:𝐴𝐽 ∧ ∀𝑝𝐴 ((𝑓𝑝) ∩ 𝐴) = {𝑝})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  cin 3913  wss 3914  c0 4296  {csn 4589   cuni 4871  wf 6507  cfv 6511  Topctop 22780  limPtclp 23021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-en 8919  df-r1 9717  df-rank 9718  df-card 9892  df-ac 10069  df-top 22781  df-cld 22906  df-ntr 22907  df-cls 22908  df-lp 23023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator