| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nlpfvineqsn | Structured version Visualization version GIF version | ||
| Description: Given a subset 𝐴 of 𝑋 with no limit points, there exists a function from each point 𝑝 of 𝐴 to an open set intersecting 𝐴 only at 𝑝. This proof uses the axiom of choice. (Contributed by ML, 23-Mar-2021.) |
| Ref | Expression |
|---|---|
| nlpineqsn.x | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| nlpfvineqsn | ⊢ (𝐴 ∈ 𝑉 → ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑓(𝑓:𝐴⟶𝐽 ∧ ∀𝑝 ∈ 𝐴 ((𝑓‘𝑝) ∩ 𝐴) = {𝑝}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlpineqsn.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | nlpineqsn 37452 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝})) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}) → (𝑛 ∩ 𝐴) = {𝑝}) | |
| 4 | 3 | reximi 3070 | . . . 4 ⊢ (∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}) → ∃𝑛 ∈ 𝐽 (𝑛 ∩ 𝐴) = {𝑝}) |
| 5 | 4 | ralimi 3069 | . . 3 ⊢ (∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}) → ∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑛 ∩ 𝐴) = {𝑝}) |
| 6 | 2, 5 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑛 ∩ 𝐴) = {𝑝}) |
| 7 | ineq1 4160 | . . . 4 ⊢ (𝑛 = (𝑓‘𝑝) → (𝑛 ∩ 𝐴) = ((𝑓‘𝑝) ∩ 𝐴)) | |
| 8 | 7 | eqeq1d 2733 | . . 3 ⊢ (𝑛 = (𝑓‘𝑝) → ((𝑛 ∩ 𝐴) = {𝑝} ↔ ((𝑓‘𝑝) ∩ 𝐴) = {𝑝})) |
| 9 | 8 | ac6sg 10379 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑛 ∩ 𝐴) = {𝑝} → ∃𝑓(𝑓:𝐴⟶𝐽 ∧ ∀𝑝 ∈ 𝐴 ((𝑓‘𝑝) ∩ 𝐴) = {𝑝}))) |
| 10 | 6, 9 | syl5 34 | 1 ⊢ (𝐴 ∈ 𝑉 → ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑓(𝑓:𝐴⟶𝐽 ∧ ∀𝑝 ∈ 𝐴 ((𝑓‘𝑝) ∩ 𝐴) = {𝑝}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 {csn 4573 ∪ cuni 4856 ⟶wf 6477 ‘cfv 6481 Topctop 22808 limPtclp 23049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-reg 9478 ax-inf2 9531 ax-ac2 10354 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-en 8870 df-r1 9657 df-rank 9658 df-card 9832 df-ac 10007 df-top 22809 df-cld 22934 df-ntr 22935 df-cls 22936 df-lp 23051 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |