MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnindd Structured version   Visualization version   GIF version

Theorem nnindd 12284
Description: Principle of Mathematical Induction (inference schema) on integers, a deduction version. (Contributed by Thierry Arnoux, 19-Jul-2020.)
Hypotheses
Ref Expression
nnindd.1 (𝑥 = 1 → (𝜓𝜒))
nnindd.2 (𝑥 = 𝑦 → (𝜓𝜃))
nnindd.3 (𝑥 = (𝑦 + 1) → (𝜓𝜏))
nnindd.4 (𝑥 = 𝐴 → (𝜓𝜂))
nnindd.5 (𝜑𝜒)
nnindd.6 (((𝜑𝑦 ∈ ℕ) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
nnindd ((𝜑𝐴 ∈ ℕ) → 𝜂)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝜑   𝜓,𝑦   𝜒,𝑥   𝜂,𝑥   𝜃,𝑥   𝜏,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝜂(𝑦)   𝐴(𝑦)

Proof of Theorem nnindd
StepHypRef Expression
1 nnindd.1 . . . 4 (𝑥 = 1 → (𝜓𝜒))
21imbi2d 340 . . 3 (𝑥 = 1 → ((𝜑𝜓) ↔ (𝜑𝜒)))
3 nnindd.2 . . . 4 (𝑥 = 𝑦 → (𝜓𝜃))
43imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝜑𝜓) ↔ (𝜑𝜃)))
5 nnindd.3 . . . 4 (𝑥 = (𝑦 + 1) → (𝜓𝜏))
65imbi2d 340 . . 3 (𝑥 = (𝑦 + 1) → ((𝜑𝜓) ↔ (𝜑𝜏)))
7 nnindd.4 . . . 4 (𝑥 = 𝐴 → (𝜓𝜂))
87imbi2d 340 . . 3 (𝑥 = 𝐴 → ((𝜑𝜓) ↔ (𝜑𝜂)))
9 nnindd.5 . . 3 (𝜑𝜒)
10 nnindd.6 . . . . . 6 (((𝜑𝑦 ∈ ℕ) ∧ 𝜃) → 𝜏)
1110ex 412 . . . . 5 ((𝜑𝑦 ∈ ℕ) → (𝜃𝜏))
1211expcom 413 . . . 4 (𝑦 ∈ ℕ → (𝜑 → (𝜃𝜏)))
1312a2d 29 . . 3 (𝑦 ∈ ℕ → ((𝜑𝜃) → (𝜑𝜏)))
142, 4, 6, 8, 9, 13nnind 12282 . 2 (𝐴 ∈ ℕ → (𝜑𝜂))
1514impcom 407 1 ((𝜑𝐴 ∈ ℕ) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  (class class class)co 7431  1c1 11154   + caddc 11156  cn 12264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754  ax-1cn 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-nn 12265
This theorem is referenced by:  fzto1st  33106  psgnfzto1st  33108  fiunelros  34155  ringexp0nn  42116  sn-nnne0  42455  renegmulnnass  42460  fsuppind  42577
  Copyright terms: Public domain W3C validator