![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnindd | Structured version Visualization version GIF version |
Description: Principle of Mathematical Induction (inference schema) on integers, a deduction version. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
Ref | Expression |
---|---|
nnindd.1 | ⊢ (𝑥 = 1 → (𝜓 ↔ 𝜒)) |
nnindd.2 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) |
nnindd.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) |
nnindd.4 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) |
nnindd.5 | ⊢ (𝜑 → 𝜒) |
nnindd.6 | ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
nnindd | ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnindd.1 | . . . 4 ⊢ (𝑥 = 1 → (𝜓 ↔ 𝜒)) | |
2 | 1 | imbi2d 340 | . . 3 ⊢ (𝑥 = 1 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
3 | nnindd.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) | |
4 | 3 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜃))) |
5 | nnindd.3 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) | |
6 | 5 | imbi2d 340 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜏))) |
7 | nnindd.4 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) | |
8 | 7 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜂))) |
9 | nnindd.5 | . . 3 ⊢ (𝜑 → 𝜒) | |
10 | nnindd.6 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ 𝜃) → 𝜏) | |
11 | 10 | ex 413 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → (𝜃 → 𝜏)) |
12 | 11 | expcom 414 | . . . 4 ⊢ (𝑦 ∈ ℕ → (𝜑 → (𝜃 → 𝜏))) |
13 | 12 | a2d 29 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝜑 → 𝜃) → (𝜑 → 𝜏))) |
14 | 2, 4, 6, 8, 9, 13 | nnind 12229 | . 2 ⊢ (𝐴 ∈ ℕ → (𝜑 → 𝜂)) |
15 | 14 | impcom 408 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 (class class class)co 7408 1c1 11110 + caddc 11112 ℕcn 12211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 ax-1cn 11167 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-nn 12212 |
This theorem is referenced by: fzto1st 32257 psgnfzto1st 32259 fiunelros 33167 fsuppind 41164 sn-nnne0 41322 renegmulnnass 41327 |
Copyright terms: Public domain | W3C validator |