| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnindd | Structured version Visualization version GIF version | ||
| Description: Principle of Mathematical Induction (inference schema) on integers, a deduction version. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
| Ref | Expression |
|---|---|
| nnindd.1 | ⊢ (𝑥 = 1 → (𝜓 ↔ 𝜒)) |
| nnindd.2 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) |
| nnindd.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) |
| nnindd.4 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) |
| nnindd.5 | ⊢ (𝜑 → 𝜒) |
| nnindd.6 | ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| nnindd | ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnindd.1 | . . . 4 ⊢ (𝑥 = 1 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | imbi2d 340 | . . 3 ⊢ (𝑥 = 1 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
| 3 | nnindd.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) | |
| 4 | 3 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜃))) |
| 5 | nnindd.3 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) | |
| 6 | 5 | imbi2d 340 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜏))) |
| 7 | nnindd.4 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) | |
| 8 | 7 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜂))) |
| 9 | nnindd.5 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 10 | nnindd.6 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ 𝜃) → 𝜏) | |
| 11 | 10 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → (𝜃 → 𝜏)) |
| 12 | 11 | expcom 413 | . . . 4 ⊢ (𝑦 ∈ ℕ → (𝜑 → (𝜃 → 𝜏))) |
| 13 | 12 | a2d 29 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝜑 → 𝜃) → (𝜑 → 𝜏))) |
| 14 | 2, 4, 6, 8, 9, 13 | nnind 12204 | . 2 ⊢ (𝐴 ∈ ℕ → (𝜑 → 𝜂)) |
| 15 | 14 | impcom 407 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 1c1 11069 + caddc 11071 ℕcn 12186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-1cn 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 |
| This theorem is referenced by: psdpw 22057 fzto1st 33060 psgnfzto1st 33062 fiunelros 34164 ringexp0nn 42122 sn-nnne0 42448 renegmulnnass 42453 fsuppind 42578 |
| Copyright terms: Public domain | W3C validator |