Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnindd | Structured version Visualization version GIF version |
Description: Principle of Mathematical Induction (inference schema) on integers, a deduction version. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
Ref | Expression |
---|---|
nnindd.1 | ⊢ (𝑥 = 1 → (𝜓 ↔ 𝜒)) |
nnindd.2 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) |
nnindd.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) |
nnindd.4 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) |
nnindd.5 | ⊢ (𝜑 → 𝜒) |
nnindd.6 | ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
nnindd | ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnindd.1 | . . . 4 ⊢ (𝑥 = 1 → (𝜓 ↔ 𝜒)) | |
2 | 1 | imbi2d 344 | . . 3 ⊢ (𝑥 = 1 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
3 | nnindd.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) | |
4 | 3 | imbi2d 344 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜃))) |
5 | nnindd.3 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) | |
6 | 5 | imbi2d 344 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜏))) |
7 | nnindd.4 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) | |
8 | 7 | imbi2d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜂))) |
9 | nnindd.5 | . . 3 ⊢ (𝜑 → 𝜒) | |
10 | nnindd.6 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ 𝜃) → 𝜏) | |
11 | 10 | ex 416 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → (𝜃 → 𝜏)) |
12 | 11 | expcom 417 | . . . 4 ⊢ (𝑦 ∈ ℕ → (𝜑 → (𝜃 → 𝜏))) |
13 | 12 | a2d 29 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝜑 → 𝜃) → (𝜑 → 𝜏))) |
14 | 2, 4, 6, 8, 9, 13 | nnind 11848 | . 2 ⊢ (𝐴 ∈ ℕ → (𝜑 → 𝜂)) |
15 | 14 | impcom 411 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 (class class class)co 7213 1c1 10730 + caddc 10732 ℕcn 11830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 ax-1cn 10787 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-nn 11831 |
This theorem is referenced by: fzto1st 31089 psgnfzto1st 31091 fiunelros 31854 fsuppind 39989 |
Copyright terms: Public domain | W3C validator |