| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnindd | Structured version Visualization version GIF version | ||
| Description: Principle of Mathematical Induction (inference schema) on integers, a deduction version. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
| Ref | Expression |
|---|---|
| nnindd.1 | ⊢ (𝑥 = 1 → (𝜓 ↔ 𝜒)) |
| nnindd.2 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) |
| nnindd.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) |
| nnindd.4 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) |
| nnindd.5 | ⊢ (𝜑 → 𝜒) |
| nnindd.6 | ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| nnindd | ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnindd.1 | . . . 4 ⊢ (𝑥 = 1 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | imbi2d 340 | . . 3 ⊢ (𝑥 = 1 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
| 3 | nnindd.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) | |
| 4 | 3 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜃))) |
| 5 | nnindd.3 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) | |
| 6 | 5 | imbi2d 340 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜏))) |
| 7 | nnindd.4 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) | |
| 8 | 7 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜂))) |
| 9 | nnindd.5 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 10 | nnindd.6 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ 𝜃) → 𝜏) | |
| 11 | 10 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → (𝜃 → 𝜏)) |
| 12 | 11 | expcom 413 | . . . 4 ⊢ (𝑦 ∈ ℕ → (𝜑 → (𝜃 → 𝜏))) |
| 13 | 12 | a2d 29 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝜑 → 𝜃) → (𝜑 → 𝜏))) |
| 14 | 2, 4, 6, 8, 9, 13 | nnind 12154 | . 2 ⊢ (𝐴 ∈ ℕ → (𝜑 → 𝜂)) |
| 15 | 14 | impcom 407 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 (class class class)co 7355 1c1 11018 + caddc 11020 ℕcn 12136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 ax-1cn 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-nn 12137 |
| This theorem is referenced by: psdpw 22104 fzto1st 33113 psgnfzto1st 33115 fiunelros 34259 ringexp0nn 42300 sn-nnne0 42630 renegmulnnass 42635 fsuppind 42748 |
| Copyright terms: Public domain | W3C validator |