Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnindd | Structured version Visualization version GIF version |
Description: Principle of Mathematical Induction (inference schema) on integers, a deduction version. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
Ref | Expression |
---|---|
nnindd.1 | ⊢ (𝑥 = 1 → (𝜓 ↔ 𝜒)) |
nnindd.2 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) |
nnindd.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) |
nnindd.4 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) |
nnindd.5 | ⊢ (𝜑 → 𝜒) |
nnindd.6 | ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
nnindd | ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnindd.1 | . . . 4 ⊢ (𝑥 = 1 → (𝜓 ↔ 𝜒)) | |
2 | 1 | imbi2d 340 | . . 3 ⊢ (𝑥 = 1 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
3 | nnindd.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) | |
4 | 3 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜃))) |
5 | nnindd.3 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) | |
6 | 5 | imbi2d 340 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜏))) |
7 | nnindd.4 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) | |
8 | 7 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜂))) |
9 | nnindd.5 | . . 3 ⊢ (𝜑 → 𝜒) | |
10 | nnindd.6 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ 𝜃) → 𝜏) | |
11 | 10 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → (𝜃 → 𝜏)) |
12 | 11 | expcom 413 | . . . 4 ⊢ (𝑦 ∈ ℕ → (𝜑 → (𝜃 → 𝜏))) |
13 | 12 | a2d 29 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝜑 → 𝜃) → (𝜑 → 𝜏))) |
14 | 2, 4, 6, 8, 9, 13 | nnind 12019 | . 2 ⊢ (𝐴 ∈ ℕ → (𝜑 → 𝜂)) |
15 | 14 | impcom 407 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1537 ∈ wcel 2101 (class class class)co 7295 1c1 10900 + caddc 10902 ℕcn 12001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7608 ax-1cn 10957 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-ov 7298 df-om 7733 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-nn 12002 |
This theorem is referenced by: fzto1st 31398 psgnfzto1st 31400 fiunelros 32170 fsuppind 40302 |
Copyright terms: Public domain | W3C validator |