MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnindd Structured version   Visualization version   GIF version

Theorem nnindd 12156
Description: Principle of Mathematical Induction (inference schema) on integers, a deduction version. (Contributed by Thierry Arnoux, 19-Jul-2020.)
Hypotheses
Ref Expression
nnindd.1 (𝑥 = 1 → (𝜓𝜒))
nnindd.2 (𝑥 = 𝑦 → (𝜓𝜃))
nnindd.3 (𝑥 = (𝑦 + 1) → (𝜓𝜏))
nnindd.4 (𝑥 = 𝐴 → (𝜓𝜂))
nnindd.5 (𝜑𝜒)
nnindd.6 (((𝜑𝑦 ∈ ℕ) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
nnindd ((𝜑𝐴 ∈ ℕ) → 𝜂)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝜑   𝜓,𝑦   𝜒,𝑥   𝜂,𝑥   𝜃,𝑥   𝜏,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝜂(𝑦)   𝐴(𝑦)

Proof of Theorem nnindd
StepHypRef Expression
1 nnindd.1 . . . 4 (𝑥 = 1 → (𝜓𝜒))
21imbi2d 340 . . 3 (𝑥 = 1 → ((𝜑𝜓) ↔ (𝜑𝜒)))
3 nnindd.2 . . . 4 (𝑥 = 𝑦 → (𝜓𝜃))
43imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝜑𝜓) ↔ (𝜑𝜃)))
5 nnindd.3 . . . 4 (𝑥 = (𝑦 + 1) → (𝜓𝜏))
65imbi2d 340 . . 3 (𝑥 = (𝑦 + 1) → ((𝜑𝜓) ↔ (𝜑𝜏)))
7 nnindd.4 . . . 4 (𝑥 = 𝐴 → (𝜓𝜂))
87imbi2d 340 . . 3 (𝑥 = 𝐴 → ((𝜑𝜓) ↔ (𝜑𝜂)))
9 nnindd.5 . . 3 (𝜑𝜒)
10 nnindd.6 . . . . . 6 (((𝜑𝑦 ∈ ℕ) ∧ 𝜃) → 𝜏)
1110ex 412 . . . . 5 ((𝜑𝑦 ∈ ℕ) → (𝜃𝜏))
1211expcom 413 . . . 4 (𝑦 ∈ ℕ → (𝜑 → (𝜃𝜏)))
1312a2d 29 . . 3 (𝑦 ∈ ℕ → ((𝜑𝜃) → (𝜑𝜏)))
142, 4, 6, 8, 9, 13nnind 12154 . 2 (𝐴 ∈ ℕ → (𝜑𝜂))
1514impcom 407 1 ((𝜑𝐴 ∈ ℕ) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  (class class class)co 7355  1c1 11018   + caddc 11020  cn 12136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677  ax-1cn 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-nn 12137
This theorem is referenced by:  psdpw  22104  fzto1st  33113  psgnfzto1st  33115  fiunelros  34259  ringexp0nn  42300  sn-nnne0  42630  renegmulnnass  42635  fsuppind  42748
  Copyright terms: Public domain W3C validator