MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn1m1nn Structured version   Visualization version   GIF version

Theorem nn1m1nn 11737
Description: Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nn1m1nn (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ))

Proof of Theorem nn1m1nn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 866 . . 3 (𝑥 = 1 → (𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ))
2 1cnd 10714 . . 3 (𝑥 = 1 → 1 ∈ ℂ)
31, 22thd 268 . 2 (𝑥 = 1 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ 1 ∈ ℂ))
4 eqeq1 2742 . . 3 (𝑥 = 𝑦 → (𝑥 = 1 ↔ 𝑦 = 1))
5 oveq1 7177 . . . 4 (𝑥 = 𝑦 → (𝑥 − 1) = (𝑦 − 1))
65eleq1d 2817 . . 3 (𝑥 = 𝑦 → ((𝑥 − 1) ∈ ℕ ↔ (𝑦 − 1) ∈ ℕ))
74, 6orbi12d 918 . 2 (𝑥 = 𝑦 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ (𝑦 = 1 ∨ (𝑦 − 1) ∈ ℕ)))
8 eqeq1 2742 . . 3 (𝑥 = (𝑦 + 1) → (𝑥 = 1 ↔ (𝑦 + 1) = 1))
9 oveq1 7177 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥 − 1) = ((𝑦 + 1) − 1))
109eleq1d 2817 . . 3 (𝑥 = (𝑦 + 1) → ((𝑥 − 1) ∈ ℕ ↔ ((𝑦 + 1) − 1) ∈ ℕ))
118, 10orbi12d 918 . 2 (𝑥 = (𝑦 + 1) → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ)))
12 eqeq1 2742 . . 3 (𝑥 = 𝐴 → (𝑥 = 1 ↔ 𝐴 = 1))
13 oveq1 7177 . . . 4 (𝑥 = 𝐴 → (𝑥 − 1) = (𝐴 − 1))
1413eleq1d 2817 . . 3 (𝑥 = 𝐴 → ((𝑥 − 1) ∈ ℕ ↔ (𝐴 − 1) ∈ ℕ))
1512, 14orbi12d 918 . 2 (𝑥 = 𝐴 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)))
16 ax-1cn 10673 . 2 1 ∈ ℂ
17 nncn 11724 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
18 pncan 10970 . . . . . 6 ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦 + 1) − 1) = 𝑦)
1917, 16, 18sylancl 589 . . . . 5 (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) = 𝑦)
20 id 22 . . . . 5 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ)
2119, 20eqeltrd 2833 . . . 4 (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) ∈ ℕ)
2221olcd 873 . . 3 (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ))
2322a1d 25 . 2 (𝑦 ∈ ℕ → ((𝑦 = 1 ∨ (𝑦 − 1) ∈ ℕ) → ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ)))
243, 7, 11, 15, 16, 23nnind 11734 1 (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846   = wceq 1542  wcel 2114  (class class class)co 7170  cc 10613  1c1 10616   + caddc 10618  cmin 10948  cn 11716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-ltxr 10758  df-sub 10950  df-nn 11717
This theorem is referenced by:  nn1suc  11738  nnsub  11760  nnm1nn0  12017  nn0ge2m1nn  12045  elfznelfzo  13233  psgnfzto1stlem  30944  ballotlemfc0  32029  ballotlemfcc  32030  stirlinglem5  43161
  Copyright terms: Public domain W3C validator