| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn1m1nn | Structured version Visualization version GIF version | ||
| Description: Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn1m1nn | ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 867 | . . 3 ⊢ (𝑥 = 1 → (𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ)) | |
| 2 | 1cnd 11102 | . . 3 ⊢ (𝑥 = 1 → 1 ∈ ℂ) | |
| 3 | 1, 2 | 2thd 265 | . 2 ⊢ (𝑥 = 1 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ 1 ∈ ℂ)) |
| 4 | eqeq1 2735 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 1 ↔ 𝑦 = 1)) | |
| 5 | oveq1 7348 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 − 1) = (𝑦 − 1)) | |
| 6 | 5 | eleq1d 2816 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 − 1) ∈ ℕ ↔ (𝑦 − 1) ∈ ℕ)) |
| 7 | 4, 6 | orbi12d 918 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ (𝑦 = 1 ∨ (𝑦 − 1) ∈ ℕ))) |
| 8 | eqeq1 2735 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (𝑥 = 1 ↔ (𝑦 + 1) = 1)) | |
| 9 | oveq1 7348 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (𝑥 − 1) = ((𝑦 + 1) − 1)) | |
| 10 | 9 | eleq1d 2816 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((𝑥 − 1) ∈ ℕ ↔ ((𝑦 + 1) − 1) ∈ ℕ)) |
| 11 | 8, 10 | orbi12d 918 | . 2 ⊢ (𝑥 = (𝑦 + 1) → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ))) |
| 12 | eqeq1 2735 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 1 ↔ 𝐴 = 1)) | |
| 13 | oveq1 7348 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 − 1) = (𝐴 − 1)) | |
| 14 | 13 | eleq1d 2816 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 − 1) ∈ ℕ ↔ (𝐴 − 1) ∈ ℕ)) |
| 15 | 12, 14 | orbi12d 918 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ))) |
| 16 | ax-1cn 11059 | . 2 ⊢ 1 ∈ ℂ | |
| 17 | nncn 12128 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
| 18 | pncan 11361 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦 + 1) − 1) = 𝑦) | |
| 19 | 17, 16, 18 | sylancl 586 | . . . . 5 ⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) = 𝑦) |
| 20 | id 22 | . . . . 5 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℕ) | |
| 21 | 19, 20 | eqeltrd 2831 | . . . 4 ⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) ∈ ℕ) |
| 22 | 21 | olcd 874 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ)) |
| 23 | 22 | a1d 25 | . 2 ⊢ (𝑦 ∈ ℕ → ((𝑦 = 1 ∨ (𝑦 − 1) ∈ ℕ) → ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ))) |
| 24 | 3, 7, 11, 15, 16, 23 | nnind 12138 | 1 ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2111 (class class class)co 7341 ℂcc 10999 1c1 11002 + caddc 11004 − cmin 11339 ℕcn 12120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-sub 11341 df-nn 12121 |
| This theorem is referenced by: nn1suc 12142 nnsub 12164 nnm1nn0 12417 nn0ge2m1nn 12446 elfznelfzo 13668 psgnfzto1stlem 33061 ballotlemfc0 34498 ballotlemfcc 34499 stirlinglem5 46116 |
| Copyright terms: Public domain | W3C validator |