MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn1m1nn Structured version   Visualization version   GIF version

Theorem nn1m1nn 12141
Description: Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nn1m1nn (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ))

Proof of Theorem nn1m1nn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 867 . . 3 (𝑥 = 1 → (𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ))
2 1cnd 11102 . . 3 (𝑥 = 1 → 1 ∈ ℂ)
31, 22thd 265 . 2 (𝑥 = 1 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ 1 ∈ ℂ))
4 eqeq1 2735 . . 3 (𝑥 = 𝑦 → (𝑥 = 1 ↔ 𝑦 = 1))
5 oveq1 7348 . . . 4 (𝑥 = 𝑦 → (𝑥 − 1) = (𝑦 − 1))
65eleq1d 2816 . . 3 (𝑥 = 𝑦 → ((𝑥 − 1) ∈ ℕ ↔ (𝑦 − 1) ∈ ℕ))
74, 6orbi12d 918 . 2 (𝑥 = 𝑦 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ (𝑦 = 1 ∨ (𝑦 − 1) ∈ ℕ)))
8 eqeq1 2735 . . 3 (𝑥 = (𝑦 + 1) → (𝑥 = 1 ↔ (𝑦 + 1) = 1))
9 oveq1 7348 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥 − 1) = ((𝑦 + 1) − 1))
109eleq1d 2816 . . 3 (𝑥 = (𝑦 + 1) → ((𝑥 − 1) ∈ ℕ ↔ ((𝑦 + 1) − 1) ∈ ℕ))
118, 10orbi12d 918 . 2 (𝑥 = (𝑦 + 1) → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ)))
12 eqeq1 2735 . . 3 (𝑥 = 𝐴 → (𝑥 = 1 ↔ 𝐴 = 1))
13 oveq1 7348 . . . 4 (𝑥 = 𝐴 → (𝑥 − 1) = (𝐴 − 1))
1413eleq1d 2816 . . 3 (𝑥 = 𝐴 → ((𝑥 − 1) ∈ ℕ ↔ (𝐴 − 1) ∈ ℕ))
1512, 14orbi12d 918 . 2 (𝑥 = 𝐴 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)))
16 ax-1cn 11059 . 2 1 ∈ ℂ
17 nncn 12128 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
18 pncan 11361 . . . . . 6 ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦 + 1) − 1) = 𝑦)
1917, 16, 18sylancl 586 . . . . 5 (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) = 𝑦)
20 id 22 . . . . 5 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ)
2119, 20eqeltrd 2831 . . . 4 (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) ∈ ℕ)
2221olcd 874 . . 3 (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ))
2322a1d 25 . 2 (𝑦 ∈ ℕ → ((𝑦 = 1 ∨ (𝑦 − 1) ∈ ℕ) → ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ)))
243, 7, 11, 15, 16, 23nnind 12138 1 (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1541  wcel 2111  (class class class)co 7341  cc 10999  1c1 11002   + caddc 11004  cmin 11339  cn 12120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-ltxr 11146  df-sub 11341  df-nn 12121
This theorem is referenced by:  nn1suc  12142  nnsub  12164  nnm1nn0  12417  nn0ge2m1nn  12446  elfznelfzo  13668  psgnfzto1stlem  33061  ballotlemfc0  34498  ballotlemfcc  34499  stirlinglem5  46116
  Copyright terms: Public domain W3C validator