MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nobdaymin Structured version   Visualization version   GIF version

Theorem nobdaymin 27716
Description: Any non-empty class of surreals has a birthday-minimal element. (Contributed by Scott Fenton, 11-Dec-2025.)
Assertion
Ref Expression
nobdaymin ((𝐴 No 𝐴 ≠ ∅) → ∃𝑥𝐴 ( bday 𝑥) = ( bday 𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem nobdaymin
StepHypRef Expression
1 imassrn 6019 . . . 4 ( bday 𝐴) ⊆ ran bday
2 bdayrn 27714 . . . 4 ran bday = On
31, 2sseqtri 3978 . . 3 ( bday 𝐴) ⊆ On
4 n0 4300 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
5 bdaydm 27713 . . . . . . . . 9 dom bday = No
65sseq2i 3959 . . . . . . . 8 (𝐴 ⊆ dom bday 𝐴 No )
7 bdayfun 27711 . . . . . . . . 9 Fun bday
8 funfvima2 7165 . . . . . . . . 9 ((Fun bday 𝐴 ⊆ dom bday ) → (𝑥𝐴 → ( bday 𝑥) ∈ ( bday 𝐴)))
97, 8mpan 690 . . . . . . . 8 (𝐴 ⊆ dom bday → (𝑥𝐴 → ( bday 𝑥) ∈ ( bday 𝐴)))
106, 9sylbir 235 . . . . . . 7 (𝐴 No → (𝑥𝐴 → ( bday 𝑥) ∈ ( bday 𝐴)))
11 ne0i 4288 . . . . . . 7 (( bday 𝑥) ∈ ( bday 𝐴) → ( bday 𝐴) ≠ ∅)
1210, 11syl6 35 . . . . . 6 (𝐴 No → (𝑥𝐴 → ( bday 𝐴) ≠ ∅))
1312exlimdv 1934 . . . . 5 (𝐴 No → (∃𝑥 𝑥𝐴 → ( bday 𝐴) ≠ ∅))
144, 13biimtrid 242 . . . 4 (𝐴 No → (𝐴 ≠ ∅ → ( bday 𝐴) ≠ ∅))
1514imp 406 . . 3 ((𝐴 No 𝐴 ≠ ∅) → ( bday 𝐴) ≠ ∅)
16 onint 7723 . . 3 ((( bday 𝐴) ⊆ On ∧ ( bday 𝐴) ≠ ∅) → ( bday 𝐴) ∈ ( bday 𝐴))
173, 15, 16sylancr 587 . 2 ((𝐴 No 𝐴 ≠ ∅) → ( bday 𝐴) ∈ ( bday 𝐴))
18 bdayfn 27712 . . . 4 bday Fn No
19 fvelimab 6894 . . . 4 (( bday Fn No 𝐴 No ) → ( ( bday 𝐴) ∈ ( bday 𝐴) ↔ ∃𝑥𝐴 ( bday 𝑥) = ( bday 𝐴)))
2018, 19mpan 690 . . 3 (𝐴 No → ( ( bday 𝐴) ∈ ( bday 𝐴) ↔ ∃𝑥𝐴 ( bday 𝑥) = ( bday 𝐴)))
2120adantr 480 . 2 ((𝐴 No 𝐴 ≠ ∅) → ( ( bday 𝐴) ∈ ( bday 𝐴) ↔ ∃𝑥𝐴 ( bday 𝑥) = ( bday 𝐴)))
2217, 21mpbid 232 1 ((𝐴 No 𝐴 ≠ ∅) → ∃𝑥𝐴 ( bday 𝑥) = ( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  wrex 3056  wss 3897  c0 4280   cint 4895  dom cdm 5614  ran crn 5615  cima 5617  Oncon0 6306  Fun wfun 6475   Fn wfn 6476  cfv 6481   No csur 27578   bday cbday 27580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-1o 8385  df-no 27581  df-bday 27583
This theorem is referenced by:  nocvxmin  27718
  Copyright terms: Public domain W3C validator