| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nobdaymin | Structured version Visualization version GIF version | ||
| Description: Any non-empty class of surreals has a birthday-minimal element. (Contributed by Scott Fenton, 11-Dec-2025.) |
| Ref | Expression |
|---|---|
| nobdaymin | ⊢ ((𝐴 ⊆ No ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ( bday ‘𝑥) = ∩ ( bday “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6019 | . . . 4 ⊢ ( bday “ 𝐴) ⊆ ran bday | |
| 2 | bdayrn 27714 | . . . 4 ⊢ ran bday = On | |
| 3 | 1, 2 | sseqtri 3978 | . . 3 ⊢ ( bday “ 𝐴) ⊆ On |
| 4 | n0 4300 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 5 | bdaydm 27713 | . . . . . . . . 9 ⊢ dom bday = No | |
| 6 | 5 | sseq2i 3959 | . . . . . . . 8 ⊢ (𝐴 ⊆ dom bday ↔ 𝐴 ⊆ No ) |
| 7 | bdayfun 27711 | . . . . . . . . 9 ⊢ Fun bday | |
| 8 | funfvima2 7165 | . . . . . . . . 9 ⊢ ((Fun bday ∧ 𝐴 ⊆ dom bday ) → (𝑥 ∈ 𝐴 → ( bday ‘𝑥) ∈ ( bday “ 𝐴))) | |
| 9 | 7, 8 | mpan 690 | . . . . . . . 8 ⊢ (𝐴 ⊆ dom bday → (𝑥 ∈ 𝐴 → ( bday ‘𝑥) ∈ ( bday “ 𝐴))) |
| 10 | 6, 9 | sylbir 235 | . . . . . . 7 ⊢ (𝐴 ⊆ No → (𝑥 ∈ 𝐴 → ( bday ‘𝑥) ∈ ( bday “ 𝐴))) |
| 11 | ne0i 4288 | . . . . . . 7 ⊢ (( bday ‘𝑥) ∈ ( bday “ 𝐴) → ( bday “ 𝐴) ≠ ∅) | |
| 12 | 10, 11 | syl6 35 | . . . . . 6 ⊢ (𝐴 ⊆ No → (𝑥 ∈ 𝐴 → ( bday “ 𝐴) ≠ ∅)) |
| 13 | 12 | exlimdv 1934 | . . . . 5 ⊢ (𝐴 ⊆ No → (∃𝑥 𝑥 ∈ 𝐴 → ( bday “ 𝐴) ≠ ∅)) |
| 14 | 4, 13 | biimtrid 242 | . . . 4 ⊢ (𝐴 ⊆ No → (𝐴 ≠ ∅ → ( bday “ 𝐴) ≠ ∅)) |
| 15 | 14 | imp 406 | . . 3 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ≠ ∅) → ( bday “ 𝐴) ≠ ∅) |
| 16 | onint 7723 | . . 3 ⊢ ((( bday “ 𝐴) ⊆ On ∧ ( bday “ 𝐴) ≠ ∅) → ∩ ( bday “ 𝐴) ∈ ( bday “ 𝐴)) | |
| 17 | 3, 15, 16 | sylancr 587 | . 2 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ≠ ∅) → ∩ ( bday “ 𝐴) ∈ ( bday “ 𝐴)) |
| 18 | bdayfn 27712 | . . . 4 ⊢ bday Fn No | |
| 19 | fvelimab 6894 | . . . 4 ⊢ (( bday Fn No ∧ 𝐴 ⊆ No ) → (∩ ( bday “ 𝐴) ∈ ( bday “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 ( bday ‘𝑥) = ∩ ( bday “ 𝐴))) | |
| 20 | 18, 19 | mpan 690 | . . 3 ⊢ (𝐴 ⊆ No → (∩ ( bday “ 𝐴) ∈ ( bday “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 ( bday ‘𝑥) = ∩ ( bday “ 𝐴))) |
| 21 | 20 | adantr 480 | . 2 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ≠ ∅) → (∩ ( bday “ 𝐴) ∈ ( bday “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 ( bday ‘𝑥) = ∩ ( bday “ 𝐴))) |
| 22 | 17, 21 | mpbid 232 | 1 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ( bday ‘𝑥) = ∩ ( bday “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ⊆ wss 3897 ∅c0 4280 ∩ cint 4895 dom cdm 5614 ran crn 5615 “ cima 5617 Oncon0 6306 Fun wfun 6475 Fn wfn 6476 ‘cfv 6481 No csur 27578 bday cbday 27580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-1o 8385 df-no 27581 df-bday 27583 |
| This theorem is referenced by: nocvxmin 27718 |
| Copyright terms: Public domain | W3C validator |