MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nobdaymin Structured version   Visualization version   GIF version

Theorem nobdaymin 27722
Description: Any non-empty class of surreals has a birthday-minimal element. (Contributed by Scott Fenton, 11-Dec-2025.)
Assertion
Ref Expression
nobdaymin ((𝐴 No 𝐴 ≠ ∅) → ∃𝑥𝐴 ( bday 𝑥) = ( bday 𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem nobdaymin
StepHypRef Expression
1 imassrn 6031 . . . 4 ( bday 𝐴) ⊆ ran bday
2 bdayrn 27720 . . . 4 ran bday = On
31, 2sseqtri 3992 . . 3 ( bday 𝐴) ⊆ On
4 n0 4312 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
5 bdaydm 27719 . . . . . . . . 9 dom bday = No
65sseq2i 3973 . . . . . . . 8 (𝐴 ⊆ dom bday 𝐴 No )
7 bdayfun 27717 . . . . . . . . 9 Fun bday
8 funfvima2 7187 . . . . . . . . 9 ((Fun bday 𝐴 ⊆ dom bday ) → (𝑥𝐴 → ( bday 𝑥) ∈ ( bday 𝐴)))
97, 8mpan 690 . . . . . . . 8 (𝐴 ⊆ dom bday → (𝑥𝐴 → ( bday 𝑥) ∈ ( bday 𝐴)))
106, 9sylbir 235 . . . . . . 7 (𝐴 No → (𝑥𝐴 → ( bday 𝑥) ∈ ( bday 𝐴)))
11 ne0i 4300 . . . . . . 7 (( bday 𝑥) ∈ ( bday 𝐴) → ( bday 𝐴) ≠ ∅)
1210, 11syl6 35 . . . . . 6 (𝐴 No → (𝑥𝐴 → ( bday 𝐴) ≠ ∅))
1312exlimdv 1933 . . . . 5 (𝐴 No → (∃𝑥 𝑥𝐴 → ( bday 𝐴) ≠ ∅))
144, 13biimtrid 242 . . . 4 (𝐴 No → (𝐴 ≠ ∅ → ( bday 𝐴) ≠ ∅))
1514imp 406 . . 3 ((𝐴 No 𝐴 ≠ ∅) → ( bday 𝐴) ≠ ∅)
16 onint 7746 . . 3 ((( bday 𝐴) ⊆ On ∧ ( bday 𝐴) ≠ ∅) → ( bday 𝐴) ∈ ( bday 𝐴))
173, 15, 16sylancr 587 . 2 ((𝐴 No 𝐴 ≠ ∅) → ( bday 𝐴) ∈ ( bday 𝐴))
18 bdayfn 27718 . . . 4 bday Fn No
19 fvelimab 6915 . . . 4 (( bday Fn No 𝐴 No ) → ( ( bday 𝐴) ∈ ( bday 𝐴) ↔ ∃𝑥𝐴 ( bday 𝑥) = ( bday 𝐴)))
2018, 19mpan 690 . . 3 (𝐴 No → ( ( bday 𝐴) ∈ ( bday 𝐴) ↔ ∃𝑥𝐴 ( bday 𝑥) = ( bday 𝐴)))
2120adantr 480 . 2 ((𝐴 No 𝐴 ≠ ∅) → ( ( bday 𝐴) ∈ ( bday 𝐴) ↔ ∃𝑥𝐴 ( bday 𝑥) = ( bday 𝐴)))
2217, 21mpbid 232 1 ((𝐴 No 𝐴 ≠ ∅) → ∃𝑥𝐴 ( bday 𝑥) = ( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  wss 3911  c0 4292   cint 4906  dom cdm 5631  ran crn 5632  cima 5634  Oncon0 6320  Fun wfun 6493   Fn wfn 6494  cfv 6499   No csur 27584   bday cbday 27586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-1o 8411  df-no 27587  df-bday 27589
This theorem is referenced by:  nocvxmin  27724
  Copyright terms: Public domain W3C validator