| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nobdaymin | Structured version Visualization version GIF version | ||
| Description: Any non-empty class of surreals has a birthday-minimal element. (Contributed by Scott Fenton, 11-Dec-2025.) |
| Ref | Expression |
|---|---|
| nobdaymin | ⊢ ((𝐴 ⊆ No ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ( bday ‘𝑥) = ∩ ( bday “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6031 | . . . 4 ⊢ ( bday “ 𝐴) ⊆ ran bday | |
| 2 | bdayrn 27720 | . . . 4 ⊢ ran bday = On | |
| 3 | 1, 2 | sseqtri 3992 | . . 3 ⊢ ( bday “ 𝐴) ⊆ On |
| 4 | n0 4312 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 5 | bdaydm 27719 | . . . . . . . . 9 ⊢ dom bday = No | |
| 6 | 5 | sseq2i 3973 | . . . . . . . 8 ⊢ (𝐴 ⊆ dom bday ↔ 𝐴 ⊆ No ) |
| 7 | bdayfun 27717 | . . . . . . . . 9 ⊢ Fun bday | |
| 8 | funfvima2 7187 | . . . . . . . . 9 ⊢ ((Fun bday ∧ 𝐴 ⊆ dom bday ) → (𝑥 ∈ 𝐴 → ( bday ‘𝑥) ∈ ( bday “ 𝐴))) | |
| 9 | 7, 8 | mpan 690 | . . . . . . . 8 ⊢ (𝐴 ⊆ dom bday → (𝑥 ∈ 𝐴 → ( bday ‘𝑥) ∈ ( bday “ 𝐴))) |
| 10 | 6, 9 | sylbir 235 | . . . . . . 7 ⊢ (𝐴 ⊆ No → (𝑥 ∈ 𝐴 → ( bday ‘𝑥) ∈ ( bday “ 𝐴))) |
| 11 | ne0i 4300 | . . . . . . 7 ⊢ (( bday ‘𝑥) ∈ ( bday “ 𝐴) → ( bday “ 𝐴) ≠ ∅) | |
| 12 | 10, 11 | syl6 35 | . . . . . 6 ⊢ (𝐴 ⊆ No → (𝑥 ∈ 𝐴 → ( bday “ 𝐴) ≠ ∅)) |
| 13 | 12 | exlimdv 1933 | . . . . 5 ⊢ (𝐴 ⊆ No → (∃𝑥 𝑥 ∈ 𝐴 → ( bday “ 𝐴) ≠ ∅)) |
| 14 | 4, 13 | biimtrid 242 | . . . 4 ⊢ (𝐴 ⊆ No → (𝐴 ≠ ∅ → ( bday “ 𝐴) ≠ ∅)) |
| 15 | 14 | imp 406 | . . 3 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ≠ ∅) → ( bday “ 𝐴) ≠ ∅) |
| 16 | onint 7746 | . . 3 ⊢ ((( bday “ 𝐴) ⊆ On ∧ ( bday “ 𝐴) ≠ ∅) → ∩ ( bday “ 𝐴) ∈ ( bday “ 𝐴)) | |
| 17 | 3, 15, 16 | sylancr 587 | . 2 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ≠ ∅) → ∩ ( bday “ 𝐴) ∈ ( bday “ 𝐴)) |
| 18 | bdayfn 27718 | . . . 4 ⊢ bday Fn No | |
| 19 | fvelimab 6915 | . . . 4 ⊢ (( bday Fn No ∧ 𝐴 ⊆ No ) → (∩ ( bday “ 𝐴) ∈ ( bday “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 ( bday ‘𝑥) = ∩ ( bday “ 𝐴))) | |
| 20 | 18, 19 | mpan 690 | . . 3 ⊢ (𝐴 ⊆ No → (∩ ( bday “ 𝐴) ∈ ( bday “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 ( bday ‘𝑥) = ∩ ( bday “ 𝐴))) |
| 21 | 20 | adantr 480 | . 2 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ≠ ∅) → (∩ ( bday “ 𝐴) ∈ ( bday “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 ( bday ‘𝑥) = ∩ ( bday “ 𝐴))) |
| 22 | 17, 21 | mpbid 232 | 1 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ( bday ‘𝑥) = ∩ ( bday “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ⊆ wss 3911 ∅c0 4292 ∩ cint 4906 dom cdm 5631 ran crn 5632 “ cima 5634 Oncon0 6320 Fun wfun 6493 Fn wfn 6494 ‘cfv 6499 No csur 27584 bday cbday 27586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fo 6505 df-fv 6507 df-1o 8411 df-no 27587 df-bday 27589 |
| This theorem is referenced by: nocvxmin 27724 |
| Copyright terms: Public domain | W3C validator |