MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayon Structured version   Visualization version   GIF version

Theorem bdayon 28180
Description: The birthday of a surreal ordinal is the set of all previous ordinal birthdays. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
bdayon (𝐴 ∈ Ons → ( bday 𝐴) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝐴}))
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdayon
Dummy variables 𝑎 𝑏 𝑝 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . 3 (𝑎 = 𝑏 → ( bday 𝑎) = ( bday 𝑏))
2 breq2 5114 . . . . . 6 (𝑎 = 𝑏 → (𝑥 <s 𝑎𝑥 <s 𝑏))
32rabbidv 3416 . . . . 5 (𝑎 = 𝑏 → {𝑥 ∈ Ons𝑥 <s 𝑎} = {𝑥 ∈ Ons𝑥 <s 𝑏})
4 breq1 5113 . . . . . 6 (𝑥 = 𝑦 → (𝑥 <s 𝑏𝑦 <s 𝑏))
54cbvrabv 3419 . . . . 5 {𝑥 ∈ Ons𝑥 <s 𝑏} = {𝑦 ∈ Ons𝑦 <s 𝑏}
63, 5eqtrdi 2781 . . . 4 (𝑎 = 𝑏 → {𝑥 ∈ Ons𝑥 <s 𝑎} = {𝑦 ∈ Ons𝑦 <s 𝑏})
76imaeq2d 6034 . . 3 (𝑎 = 𝑏 → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))
81, 7eqeq12d 2746 . 2 (𝑎 = 𝑏 → (( bday 𝑎) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})))
9 fveq2 6861 . . 3 (𝑎 = 𝐴 → ( bday 𝑎) = ( bday 𝐴))
10 breq2 5114 . . . . 5 (𝑎 = 𝐴 → (𝑥 <s 𝑎𝑥 <s 𝐴))
1110rabbidv 3416 . . . 4 (𝑎 = 𝐴 → {𝑥 ∈ Ons𝑥 <s 𝑎} = {𝑥 ∈ Ons𝑥 <s 𝐴})
1211imaeq2d 6034 . . 3 (𝑎 = 𝐴 → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝐴}))
139, 12eqeq12d 2746 . 2 (𝑎 = 𝐴 → (( bday 𝑎) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ( bday 𝐴) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝐴})))
14 onscutlt 28172 . . . . . . 7 (𝑎 ∈ Ons𝑎 = ({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅))
1514adantr 480 . . . . . 6 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → 𝑎 = ({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅))
1615fveq2d 6865 . . . . 5 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday 𝑎) = ( bday ‘({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅)))
17 onsno 28163 . . . . . . . . . 10 (𝑎 ∈ Ons𝑎 No )
18 sltonex 28170 . . . . . . . . . 10 (𝑎 No → {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ V)
1917, 18syl 17 . . . . . . . . 9 (𝑎 ∈ Ons → {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ V)
2019adantr 480 . . . . . . . 8 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ V)
21 ssrab2 4046 . . . . . . . . . 10 {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ Ons
22 onssno 28162 . . . . . . . . . 10 Ons No
2321, 22sstri 3959 . . . . . . . . 9 {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ No
2423a1i 11 . . . . . . . 8 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ No )
2520, 24elpwd 4572 . . . . . . 7 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ 𝒫 No )
26 nulssgt 27717 . . . . . . 7 ({𝑥 ∈ Ons𝑥 <s 𝑎} ∈ 𝒫 No → {𝑥 ∈ Ons𝑥 <s 𝑎} <<s ∅)
2725, 26syl 17 . . . . . 6 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → {𝑥 ∈ Ons𝑥 <s 𝑎} <<s ∅)
28 bdayfn 27692 . . . . . . . . . . . . 13 bday Fn No
29 fvelimab 6936 . . . . . . . . . . . . 13 (( bday Fn No ∧ {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ No ) → (𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∃𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) = 𝑞))
3028, 23, 29mp2an 692 . . . . . . . . . . . 12 (𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∃𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) = 𝑞)
31 breq1 5113 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥 <s 𝑎𝑧 <s 𝑎))
3231rexrab 3670 . . . . . . . . . . . 12 (∃𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) = 𝑞 ↔ ∃𝑧 ∈ Ons (𝑧 <s 𝑎 ∧ ( bday 𝑧) = 𝑞))
3330, 32bitri 275 . . . . . . . . . . 11 (𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∃𝑧 ∈ Ons (𝑧 <s 𝑎 ∧ ( bday 𝑧) = 𝑞))
34 breq1 5113 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑧 → (𝑏 <s 𝑎𝑧 <s 𝑎))
35 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑧 → ( bday 𝑏) = ( bday 𝑧))
36 breq2 5114 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = 𝑧 → (𝑦 <s 𝑏𝑦 <s 𝑧))
3736rabbidv 3416 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = 𝑧 → {𝑦 ∈ Ons𝑦 <s 𝑏} = {𝑦 ∈ Ons𝑦 <s 𝑧})
38 breq1 5113 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑦 → (𝑥 <s 𝑧𝑦 <s 𝑧))
3938cbvrabv 3419 . . . . . . . . . . . . . . . . . . . . . . . . 25 {𝑥 ∈ Ons𝑥 <s 𝑧} = {𝑦 ∈ Ons𝑦 <s 𝑧}
4037, 39eqtr4di 2783 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑧 → {𝑦 ∈ Ons𝑦 <s 𝑏} = {𝑥 ∈ Ons𝑥 <s 𝑧})
4140imaeq2d 6034 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑧 → ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}))
4235, 41eqeq12d 2746 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑧 → (( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}) ↔ ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧})))
4334, 42imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑧 → ((𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})) ↔ (𝑧 <s 𝑎 → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}))))
4443rspccv 3588 . . . . . . . . . . . . . . . . . . . 20 (∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})) → (𝑧 ∈ Ons → (𝑧 <s 𝑎 → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}))))
4544imp 406 . . . . . . . . . . . . . . . . . . 19 ((∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧})))
4645adantll 714 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧})))
4746impr 454 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}))
48 simplrr 777 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑧 <s 𝑎)
49 onsno 28163 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ Ons𝑥 No )
5049adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑥 No )
51 simplrl 776 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑧 ∈ Ons)
52 onsno 28163 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ Ons𝑧 No )
5351, 52syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑧 No )
54 simplll 774 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑎 ∈ Ons)
5554, 17syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑎 No )
56 slttr 27666 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 No 𝑧 No 𝑎 No ) → ((𝑥 <s 𝑧𝑧 <s 𝑎) → 𝑥 <s 𝑎))
5750, 53, 55, 56syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → ((𝑥 <s 𝑧𝑧 <s 𝑎) → 𝑥 <s 𝑎))
5848, 57mpan2d 694 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → (𝑥 <s 𝑧𝑥 <s 𝑎))
5958ss2rabdv 4042 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → {𝑥 ∈ Ons𝑥 <s 𝑧} ⊆ {𝑥 ∈ Ons𝑥 <s 𝑎})
60 imass2 6076 . . . . . . . . . . . . . . . . . 18 ({𝑥 ∈ Ons𝑥 <s 𝑧} ⊆ {𝑥 ∈ Ons𝑥 <s 𝑎} → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
6159, 60syl 17 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
6247, 61eqsstrd 3984 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → ( bday 𝑧) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
6362sseld 3948 . . . . . . . . . . . . . . 15 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → (𝑝 ∈ ( bday 𝑧) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
64 eleq2 2818 . . . . . . . . . . . . . . . . 17 (( bday 𝑧) = 𝑞 → (𝑝 ∈ ( bday 𝑧) ↔ 𝑝𝑞))
6564imbi1d 341 . . . . . . . . . . . . . . . 16 (( bday 𝑧) = 𝑞 → ((𝑝 ∈ ( bday 𝑧) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) ↔ (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
6665bicomd 223 . . . . . . . . . . . . . . 15 (( bday 𝑧) = 𝑞 → ((𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) ↔ (𝑝 ∈ ( bday 𝑧) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
6763, 66syl5ibrcom 247 . . . . . . . . . . . . . 14 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → (( bday 𝑧) = 𝑞 → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
6867expr 456 . . . . . . . . . . . . 13 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 → (( bday 𝑧) = 𝑞 → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))))
6968impd 410 . . . . . . . . . . . 12 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → ((𝑧 <s 𝑎 ∧ ( bday 𝑧) = 𝑞) → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
7069rexlimdva 3135 . . . . . . . . . . 11 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → (∃𝑧 ∈ Ons (𝑧 <s 𝑎 ∧ ( bday 𝑧) = 𝑞) → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
7133, 70biimtrid 242 . . . . . . . . . 10 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → (𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
7271impcomd 411 . . . . . . . . 9 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ((𝑝𝑞𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
7372alrimivv 1928 . . . . . . . 8 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ∀𝑝𝑞((𝑝𝑞𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
74 imassrn 6045 . . . . . . . . . . 11 ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ran bday
75 bdayrn 27694 . . . . . . . . . . 11 ran bday = On
7674, 75sseqtri 3998 . . . . . . . . . 10 ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ On
77 dford5 7763 . . . . . . . . . 10 (Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ On ∧ Tr ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
7876, 77mpbiran 709 . . . . . . . . 9 (Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ Tr ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
79 dftr2 5219 . . . . . . . . 9 (Tr ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∀𝑝𝑞((𝑝𝑞𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
8078, 79bitri 275 . . . . . . . 8 (Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∀𝑝𝑞((𝑝𝑞𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
8173, 80sylibr 234 . . . . . . 7 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
82 bdayfun 27691 . . . . . . . 8 Fun bday
83 funimaexg 6606 . . . . . . . 8 ((Fun bday ∧ {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ V) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ V)
8482, 20, 83sylancr 587 . . . . . . 7 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ V)
85 elon2 6346 . . . . . . 7 (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ On ↔ (Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∧ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ V))
8681, 84, 85sylanbrc 583 . . . . . 6 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ On)
87 un0 4360 . . . . . . . . 9 ({𝑥 ∈ Ons𝑥 <s 𝑎} ∪ ∅) = {𝑥 ∈ Ons𝑥 <s 𝑎}
8887imaeq2i 6032 . . . . . . . 8 ( bday “ ({𝑥 ∈ Ons𝑥 <s 𝑎} ∪ ∅)) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})
8988eqimssi 4010 . . . . . . 7 ( bday “ ({𝑥 ∈ Ons𝑥 <s 𝑎} ∪ ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})
90 scutbdaybnd 27734 . . . . . . 7 (({𝑥 ∈ Ons𝑥 <s 𝑎} <<s ∅ ∧ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ On ∧ ( bday “ ({𝑥 ∈ Ons𝑥 <s 𝑎} ∪ ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → ( bday ‘({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
9189, 90mp3an3 1452 . . . . . 6 (({𝑥 ∈ Ons𝑥 <s 𝑎} <<s ∅ ∧ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ On) → ( bday ‘({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
9227, 86, 91syl2anc 584 . . . . 5 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday ‘({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
9316, 92eqsstrd 3984 . . . 4 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday 𝑎) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
94 simpr 484 . . . . . . . 8 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → 𝑧 ∈ Ons)
95 simpll 766 . . . . . . . 8 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → 𝑎 ∈ Ons)
96 onslt 28175 . . . . . . . 8 ((𝑧 ∈ Ons𝑎 ∈ Ons) → (𝑧 <s 𝑎 ↔ ( bday 𝑧) ∈ ( bday 𝑎)))
9794, 95, 96syl2anc 584 . . . . . . 7 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 ↔ ( bday 𝑧) ∈ ( bday 𝑎)))
9897biimpd 229 . . . . . 6 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 → ( bday 𝑧) ∈ ( bday 𝑎)))
9998ralrimiva 3126 . . . . 5 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ∀𝑧 ∈ Ons (𝑧 <s 𝑎 → ( bday 𝑧) ∈ ( bday 𝑎)))
100 bdaydm 27693 . . . . . . . 8 dom bday = No
10123, 100sseqtrri 3999 . . . . . . 7 {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ dom bday
102 funimass4 6928 . . . . . . 7 ((Fun bday ∧ {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ dom bday ) → (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ( bday 𝑎) ↔ ∀𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) ∈ ( bday 𝑎)))
10382, 101, 102mp2an 692 . . . . . 6 (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ( bday 𝑎) ↔ ∀𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) ∈ ( bday 𝑎))
10431ralrab 3668 . . . . . 6 (∀𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) ∈ ( bday 𝑎) ↔ ∀𝑧 ∈ Ons (𝑧 <s 𝑎 → ( bday 𝑧) ∈ ( bday 𝑎)))
105103, 104bitri 275 . . . . 5 (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ( bday 𝑎) ↔ ∀𝑧 ∈ Ons (𝑧 <s 𝑎 → ( bday 𝑧) ∈ ( bday 𝑎)))
10699, 105sylibr 234 . . . 4 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ( bday 𝑎))
10793, 106eqssd 3967 . . 3 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday 𝑎) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
108107ex 412 . 2 (𝑎 ∈ Ons → (∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})) → ( bday 𝑎) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
1098, 13, 108onsis 28179 1 (𝐴 ∈ Ons → ( bday 𝐴) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cun 3915  wss 3917  c0 4299  𝒫 cpw 4566   class class class wbr 5110  Tr wtr 5217  dom cdm 5641  ran crn 5642  cima 5644  Ord word 6334  Oncon0 6335  Fun wfun 6508   Fn wfn 6509  cfv 6514  (class class class)co 7390   No csur 27558   <s cslt 27559   bday cbday 27560   <<s csslt 27699   |s cscut 27701  Onscons 28159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-made 27762  df-old 27763  df-new 27764  df-left 27765  df-right 27766  df-ons 28160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator