MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayon Structured version   Visualization version   GIF version

Theorem bdayon 28225
Description: The birthday of a surreal ordinal is the set of all previous ordinal birthdays. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
bdayon (𝐴 ∈ Ons → ( bday 𝐴) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝐴}))
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdayon
Dummy variables 𝑎 𝑏 𝑝 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6876 . . 3 (𝑎 = 𝑏 → ( bday 𝑎) = ( bday 𝑏))
2 breq2 5123 . . . . . 6 (𝑎 = 𝑏 → (𝑥 <s 𝑎𝑥 <s 𝑏))
32rabbidv 3423 . . . . 5 (𝑎 = 𝑏 → {𝑥 ∈ Ons𝑥 <s 𝑎} = {𝑥 ∈ Ons𝑥 <s 𝑏})
4 breq1 5122 . . . . . 6 (𝑥 = 𝑦 → (𝑥 <s 𝑏𝑦 <s 𝑏))
54cbvrabv 3426 . . . . 5 {𝑥 ∈ Ons𝑥 <s 𝑏} = {𝑦 ∈ Ons𝑦 <s 𝑏}
63, 5eqtrdi 2786 . . . 4 (𝑎 = 𝑏 → {𝑥 ∈ Ons𝑥 <s 𝑎} = {𝑦 ∈ Ons𝑦 <s 𝑏})
76imaeq2d 6047 . . 3 (𝑎 = 𝑏 → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))
81, 7eqeq12d 2751 . 2 (𝑎 = 𝑏 → (( bday 𝑎) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})))
9 fveq2 6876 . . 3 (𝑎 = 𝐴 → ( bday 𝑎) = ( bday 𝐴))
10 breq2 5123 . . . . 5 (𝑎 = 𝐴 → (𝑥 <s 𝑎𝑥 <s 𝐴))
1110rabbidv 3423 . . . 4 (𝑎 = 𝐴 → {𝑥 ∈ Ons𝑥 <s 𝑎} = {𝑥 ∈ Ons𝑥 <s 𝐴})
1211imaeq2d 6047 . . 3 (𝑎 = 𝐴 → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝐴}))
139, 12eqeq12d 2751 . 2 (𝑎 = 𝐴 → (( bday 𝑎) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ( bday 𝐴) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝐴})))
14 onscutlt 28217 . . . . . . 7 (𝑎 ∈ Ons𝑎 = ({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅))
1514adantr 480 . . . . . 6 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → 𝑎 = ({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅))
1615fveq2d 6880 . . . . 5 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday 𝑎) = ( bday ‘({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅)))
17 onsno 28208 . . . . . . . . . 10 (𝑎 ∈ Ons𝑎 No )
18 sltonex 28215 . . . . . . . . . 10 (𝑎 No → {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ V)
1917, 18syl 17 . . . . . . . . 9 (𝑎 ∈ Ons → {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ V)
2019adantr 480 . . . . . . . 8 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ V)
21 ssrab2 4055 . . . . . . . . . 10 {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ Ons
22 onssno 28207 . . . . . . . . . 10 Ons No
2321, 22sstri 3968 . . . . . . . . 9 {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ No
2423a1i 11 . . . . . . . 8 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ No )
2520, 24elpwd 4581 . . . . . . 7 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ 𝒫 No )
26 nulssgt 27762 . . . . . . 7 ({𝑥 ∈ Ons𝑥 <s 𝑎} ∈ 𝒫 No → {𝑥 ∈ Ons𝑥 <s 𝑎} <<s ∅)
2725, 26syl 17 . . . . . 6 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → {𝑥 ∈ Ons𝑥 <s 𝑎} <<s ∅)
28 bdayfn 27737 . . . . . . . . . . . . 13 bday Fn No
29 fvelimab 6951 . . . . . . . . . . . . 13 (( bday Fn No ∧ {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ No ) → (𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∃𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) = 𝑞))
3028, 23, 29mp2an 692 . . . . . . . . . . . 12 (𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∃𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) = 𝑞)
31 breq1 5122 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥 <s 𝑎𝑧 <s 𝑎))
3231rexrab 3679 . . . . . . . . . . . 12 (∃𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) = 𝑞 ↔ ∃𝑧 ∈ Ons (𝑧 <s 𝑎 ∧ ( bday 𝑧) = 𝑞))
3330, 32bitri 275 . . . . . . . . . . 11 (𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∃𝑧 ∈ Ons (𝑧 <s 𝑎 ∧ ( bday 𝑧) = 𝑞))
34 breq1 5122 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑧 → (𝑏 <s 𝑎𝑧 <s 𝑎))
35 fveq2 6876 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑧 → ( bday 𝑏) = ( bday 𝑧))
36 breq2 5123 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = 𝑧 → (𝑦 <s 𝑏𝑦 <s 𝑧))
3736rabbidv 3423 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = 𝑧 → {𝑦 ∈ Ons𝑦 <s 𝑏} = {𝑦 ∈ Ons𝑦 <s 𝑧})
38 breq1 5122 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑦 → (𝑥 <s 𝑧𝑦 <s 𝑧))
3938cbvrabv 3426 . . . . . . . . . . . . . . . . . . . . . . . . 25 {𝑥 ∈ Ons𝑥 <s 𝑧} = {𝑦 ∈ Ons𝑦 <s 𝑧}
4037, 39eqtr4di 2788 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑧 → {𝑦 ∈ Ons𝑦 <s 𝑏} = {𝑥 ∈ Ons𝑥 <s 𝑧})
4140imaeq2d 6047 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑧 → ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}))
4235, 41eqeq12d 2751 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑧 → (( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}) ↔ ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧})))
4334, 42imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑧 → ((𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})) ↔ (𝑧 <s 𝑎 → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}))))
4443rspccv 3598 . . . . . . . . . . . . . . . . . . . 20 (∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})) → (𝑧 ∈ Ons → (𝑧 <s 𝑎 → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}))))
4544imp 406 . . . . . . . . . . . . . . . . . . 19 ((∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧})))
4645adantll 714 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧})))
4746impr 454 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}))
48 simplrr 777 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑧 <s 𝑎)
49 onsno 28208 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ Ons𝑥 No )
5049adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑥 No )
51 simplrl 776 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑧 ∈ Ons)
52 onsno 28208 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ Ons𝑧 No )
5351, 52syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑧 No )
54 simplll 774 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑎 ∈ Ons)
5554, 17syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑎 No )
56 slttr 27711 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 No 𝑧 No 𝑎 No ) → ((𝑥 <s 𝑧𝑧 <s 𝑎) → 𝑥 <s 𝑎))
5750, 53, 55, 56syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → ((𝑥 <s 𝑧𝑧 <s 𝑎) → 𝑥 <s 𝑎))
5848, 57mpan2d 694 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → (𝑥 <s 𝑧𝑥 <s 𝑎))
5958ss2rabdv 4051 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → {𝑥 ∈ Ons𝑥 <s 𝑧} ⊆ {𝑥 ∈ Ons𝑥 <s 𝑎})
60 imass2 6089 . . . . . . . . . . . . . . . . . 18 ({𝑥 ∈ Ons𝑥 <s 𝑧} ⊆ {𝑥 ∈ Ons𝑥 <s 𝑎} → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
6159, 60syl 17 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
6247, 61eqsstrd 3993 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → ( bday 𝑧) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
6362sseld 3957 . . . . . . . . . . . . . . 15 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → (𝑝 ∈ ( bday 𝑧) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
64 eleq2 2823 . . . . . . . . . . . . . . . . 17 (( bday 𝑧) = 𝑞 → (𝑝 ∈ ( bday 𝑧) ↔ 𝑝𝑞))
6564imbi1d 341 . . . . . . . . . . . . . . . 16 (( bday 𝑧) = 𝑞 → ((𝑝 ∈ ( bday 𝑧) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) ↔ (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
6665bicomd 223 . . . . . . . . . . . . . . 15 (( bday 𝑧) = 𝑞 → ((𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) ↔ (𝑝 ∈ ( bday 𝑧) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
6763, 66syl5ibrcom 247 . . . . . . . . . . . . . 14 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → (( bday 𝑧) = 𝑞 → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
6867expr 456 . . . . . . . . . . . . 13 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 → (( bday 𝑧) = 𝑞 → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))))
6968impd 410 . . . . . . . . . . . 12 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → ((𝑧 <s 𝑎 ∧ ( bday 𝑧) = 𝑞) → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
7069rexlimdva 3141 . . . . . . . . . . 11 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → (∃𝑧 ∈ Ons (𝑧 <s 𝑎 ∧ ( bday 𝑧) = 𝑞) → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
7133, 70biimtrid 242 . . . . . . . . . 10 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → (𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
7271impcomd 411 . . . . . . . . 9 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ((𝑝𝑞𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
7372alrimivv 1928 . . . . . . . 8 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ∀𝑝𝑞((𝑝𝑞𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
74 imassrn 6058 . . . . . . . . . . 11 ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ran bday
75 bdayrn 27739 . . . . . . . . . . 11 ran bday = On
7674, 75sseqtri 4007 . . . . . . . . . 10 ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ On
77 dford5 7778 . . . . . . . . . 10 (Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ On ∧ Tr ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
7876, 77mpbiran 709 . . . . . . . . 9 (Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ Tr ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
79 dftr2 5231 . . . . . . . . 9 (Tr ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∀𝑝𝑞((𝑝𝑞𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
8078, 79bitri 275 . . . . . . . 8 (Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∀𝑝𝑞((𝑝𝑞𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
8173, 80sylibr 234 . . . . . . 7 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
82 bdayfun 27736 . . . . . . . 8 Fun bday
83 funimaexg 6623 . . . . . . . 8 ((Fun bday ∧ {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ V) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ V)
8482, 20, 83sylancr 587 . . . . . . 7 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ V)
85 elon2 6363 . . . . . . 7 (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ On ↔ (Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∧ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ V))
8681, 84, 85sylanbrc 583 . . . . . 6 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ On)
87 un0 4369 . . . . . . . . 9 ({𝑥 ∈ Ons𝑥 <s 𝑎} ∪ ∅) = {𝑥 ∈ Ons𝑥 <s 𝑎}
8887imaeq2i 6045 . . . . . . . 8 ( bday “ ({𝑥 ∈ Ons𝑥 <s 𝑎} ∪ ∅)) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})
8988eqimssi 4019 . . . . . . 7 ( bday “ ({𝑥 ∈ Ons𝑥 <s 𝑎} ∪ ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})
90 scutbdaybnd 27779 . . . . . . 7 (({𝑥 ∈ Ons𝑥 <s 𝑎} <<s ∅ ∧ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ On ∧ ( bday “ ({𝑥 ∈ Ons𝑥 <s 𝑎} ∪ ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → ( bday ‘({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
9189, 90mp3an3 1452 . . . . . 6 (({𝑥 ∈ Ons𝑥 <s 𝑎} <<s ∅ ∧ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ On) → ( bday ‘({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
9227, 86, 91syl2anc 584 . . . . 5 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday ‘({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
9316, 92eqsstrd 3993 . . . 4 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday 𝑎) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
94 simpr 484 . . . . . . . 8 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → 𝑧 ∈ Ons)
95 simpll 766 . . . . . . . 8 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → 𝑎 ∈ Ons)
96 onslt 28220 . . . . . . . 8 ((𝑧 ∈ Ons𝑎 ∈ Ons) → (𝑧 <s 𝑎 ↔ ( bday 𝑧) ∈ ( bday 𝑎)))
9794, 95, 96syl2anc 584 . . . . . . 7 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 ↔ ( bday 𝑧) ∈ ( bday 𝑎)))
9897biimpd 229 . . . . . 6 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 → ( bday 𝑧) ∈ ( bday 𝑎)))
9998ralrimiva 3132 . . . . 5 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ∀𝑧 ∈ Ons (𝑧 <s 𝑎 → ( bday 𝑧) ∈ ( bday 𝑎)))
100 bdaydm 27738 . . . . . . . 8 dom bday = No
10123, 100sseqtrri 4008 . . . . . . 7 {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ dom bday
102 funimass4 6943 . . . . . . 7 ((Fun bday ∧ {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ dom bday ) → (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ( bday 𝑎) ↔ ∀𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) ∈ ( bday 𝑎)))
10382, 101, 102mp2an 692 . . . . . 6 (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ( bday 𝑎) ↔ ∀𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) ∈ ( bday 𝑎))
10431ralrab 3677 . . . . . 6 (∀𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) ∈ ( bday 𝑎) ↔ ∀𝑧 ∈ Ons (𝑧 <s 𝑎 → ( bday 𝑧) ∈ ( bday 𝑎)))
105103, 104bitri 275 . . . . 5 (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ( bday 𝑎) ↔ ∀𝑧 ∈ Ons (𝑧 <s 𝑎 → ( bday 𝑧) ∈ ( bday 𝑎)))
10699, 105sylibr 234 . . . 4 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ( bday 𝑎))
10793, 106eqssd 3976 . . 3 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday 𝑎) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
108107ex 412 . 2 (𝑎 ∈ Ons → (∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})) → ( bday 𝑎) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
1098, 13, 108onsis 28224 1 (𝐴 ∈ Ons → ( bday 𝐴) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  cun 3924  wss 3926  c0 4308  𝒫 cpw 4575   class class class wbr 5119  Tr wtr 5229  dom cdm 5654  ran crn 5655  cima 5657  Ord word 6351  Oncon0 6352  Fun wfun 6525   Fn wfn 6526  cfv 6531  (class class class)co 7405   No csur 27603   <s cslt 27604   bday cbday 27605   <<s csslt 27744   |s cscut 27746  Onscons 28204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-1o 8480  df-2o 8481  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-made 27807  df-old 27808  df-new 27809  df-left 27810  df-right 27811  df-ons 28205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator