| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6876 |
. . 3
⊢ (𝑎 = 𝑏 → ( bday
‘𝑎) = ( bday ‘𝑏)) |
| 2 | | breq2 5123 |
. . . . . 6
⊢ (𝑎 = 𝑏 → (𝑥 <s 𝑎 ↔ 𝑥 <s 𝑏)) |
| 3 | 2 | rabbidv 3423 |
. . . . 5
⊢ (𝑎 = 𝑏 → {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎} = {𝑥 ∈ Ons ∣ 𝑥 <s 𝑏}) |
| 4 | | breq1 5122 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 <s 𝑏 ↔ 𝑦 <s 𝑏)) |
| 5 | 4 | cbvrabv 3426 |
. . . . 5
⊢ {𝑥 ∈ Ons ∣
𝑥 <s 𝑏} = {𝑦 ∈ Ons ∣ 𝑦 <s 𝑏} |
| 6 | 3, 5 | eqtrdi 2786 |
. . . 4
⊢ (𝑎 = 𝑏 → {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎} = {𝑦 ∈ Ons ∣ 𝑦 <s 𝑏}) |
| 7 | 6 | imaeq2d 6047 |
. . 3
⊢ (𝑎 = 𝑏 → ( bday
“ {𝑥 ∈
Ons ∣ 𝑥
<s 𝑎}) = ( bday “ {𝑦 ∈ Ons ∣ 𝑦 <s 𝑏})) |
| 8 | 1, 7 | eqeq12d 2751 |
. 2
⊢ (𝑎 = 𝑏 → (( bday
‘𝑎) = ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎}) ↔ ( bday
‘𝑏) = ( bday “ {𝑦 ∈ Ons ∣ 𝑦 <s 𝑏}))) |
| 9 | | fveq2 6876 |
. . 3
⊢ (𝑎 = 𝐴 → ( bday
‘𝑎) = ( bday ‘𝐴)) |
| 10 | | breq2 5123 |
. . . . 5
⊢ (𝑎 = 𝐴 → (𝑥 <s 𝑎 ↔ 𝑥 <s 𝐴)) |
| 11 | 10 | rabbidv 3423 |
. . . 4
⊢ (𝑎 = 𝐴 → {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎} = {𝑥 ∈ Ons ∣ 𝑥 <s 𝐴}) |
| 12 | 11 | imaeq2d 6047 |
. . 3
⊢ (𝑎 = 𝐴 → ( bday
“ {𝑥 ∈
Ons ∣ 𝑥
<s 𝑎}) = ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝐴})) |
| 13 | 9, 12 | eqeq12d 2751 |
. 2
⊢ (𝑎 = 𝐴 → (( bday
‘𝑎) = ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎}) ↔ ( bday
‘𝐴) = ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝐴}))) |
| 14 | | onscutlt 28217 |
. . . . . . 7
⊢ (𝑎 ∈ Ons →
𝑎 = ({𝑥 ∈ Ons ∣ 𝑥 <s 𝑎} |s ∅)) |
| 15 | 14 | adantr 480 |
. . . . . 6
⊢ ((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) → 𝑎 = ({𝑥 ∈ Ons ∣ 𝑥 <s 𝑎} |s ∅)) |
| 16 | 15 | fveq2d 6880 |
. . . . 5
⊢ ((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) → ( bday ‘𝑎) = ( bday
‘({𝑥 ∈
Ons ∣ 𝑥
<s 𝑎} |s
∅))) |
| 17 | | onsno 28208 |
. . . . . . . . . 10
⊢ (𝑎 ∈ Ons →
𝑎 ∈ No ) |
| 18 | | sltonex 28215 |
. . . . . . . . . 10
⊢ (𝑎 ∈
No → {𝑥 ∈
Ons ∣ 𝑥
<s 𝑎} ∈
V) |
| 19 | 17, 18 | syl 17 |
. . . . . . . . 9
⊢ (𝑎 ∈ Ons →
{𝑥 ∈ Ons
∣ 𝑥 <s 𝑎} ∈ V) |
| 20 | 19 | adantr 480 |
. . . . . . . 8
⊢ ((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) → {𝑥 ∈ Ons ∣
𝑥 <s 𝑎} ∈ V) |
| 21 | | ssrab2 4055 |
. . . . . . . . . 10
⊢ {𝑥 ∈ Ons ∣
𝑥 <s 𝑎} ⊆ Ons |
| 22 | | onssno 28207 |
. . . . . . . . . 10
⊢
Ons ⊆ No
|
| 23 | 21, 22 | sstri 3968 |
. . . . . . . . 9
⊢ {𝑥 ∈ Ons ∣
𝑥 <s 𝑎} ⊆ No
|
| 24 | 23 | a1i 11 |
. . . . . . . 8
⊢ ((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) → {𝑥 ∈ Ons ∣
𝑥 <s 𝑎} ⊆ No
) |
| 25 | 20, 24 | elpwd 4581 |
. . . . . . 7
⊢ ((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) → {𝑥 ∈ Ons ∣
𝑥 <s 𝑎} ∈ 𝒫 No
) |
| 26 | | nulssgt 27762 |
. . . . . . 7
⊢ ({𝑥 ∈ Ons ∣
𝑥 <s 𝑎} ∈ 𝒫 No
→ {𝑥 ∈
Ons ∣ 𝑥
<s 𝑎} <<s
∅) |
| 27 | 25, 26 | syl 17 |
. . . . . 6
⊢ ((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) → {𝑥 ∈ Ons ∣
𝑥 <s 𝑎} <<s ∅) |
| 28 | | bdayfn 27737 |
. . . . . . . . . . . . 13
⊢ bday Fn No
|
| 29 | | fvelimab 6951 |
. . . . . . . . . . . . 13
⊢ (( bday Fn No ∧ {𝑥 ∈ Ons ∣
𝑥 <s 𝑎} ⊆ No )
→ (𝑞 ∈ ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎}) ↔ ∃𝑧 ∈ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎} ( bday
‘𝑧) = 𝑞)) |
| 30 | 28, 23, 29 | mp2an 692 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ (
bday “ {𝑥
∈ Ons ∣ 𝑥 <s 𝑎}) ↔ ∃𝑧 ∈ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎} ( bday
‘𝑧) = 𝑞) |
| 31 | | breq1 5122 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑥 <s 𝑎 ↔ 𝑧 <s 𝑎)) |
| 32 | 31 | rexrab 3679 |
. . . . . . . . . . . 12
⊢
(∃𝑧 ∈
{𝑥 ∈ Ons
∣ 𝑥 <s 𝑎} ( bday
‘𝑧) = 𝑞 ↔ ∃𝑧 ∈ Ons (𝑧 <s 𝑎 ∧ ( bday
‘𝑧) = 𝑞)) |
| 33 | 30, 32 | bitri 275 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ (
bday “ {𝑥
∈ Ons ∣ 𝑥 <s 𝑎}) ↔ ∃𝑧 ∈ Ons (𝑧 <s 𝑎 ∧ ( bday
‘𝑧) = 𝑞)) |
| 34 | | breq1 5122 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = 𝑧 → (𝑏 <s 𝑎 ↔ 𝑧 <s 𝑎)) |
| 35 | | fveq2 6876 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 = 𝑧 → ( bday
‘𝑏) = ( bday ‘𝑧)) |
| 36 | | breq2 5123 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑏 = 𝑧 → (𝑦 <s 𝑏 ↔ 𝑦 <s 𝑧)) |
| 37 | 36 | rabbidv 3423 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑏 = 𝑧 → {𝑦 ∈ Ons ∣ 𝑦 <s 𝑏} = {𝑦 ∈ Ons ∣ 𝑦 <s 𝑧}) |
| 38 | | breq1 5122 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = 𝑦 → (𝑥 <s 𝑧 ↔ 𝑦 <s 𝑧)) |
| 39 | 38 | cbvrabv 3426 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ {𝑥 ∈ Ons ∣
𝑥 <s 𝑧} = {𝑦 ∈ Ons ∣ 𝑦 <s 𝑧} |
| 40 | 37, 39 | eqtr4di 2788 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑏 = 𝑧 → {𝑦 ∈ Ons ∣ 𝑦 <s 𝑏} = {𝑥 ∈ Ons ∣ 𝑥 <s 𝑧}) |
| 41 | 40 | imaeq2d 6047 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 = 𝑧 → ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}) = ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑧})) |
| 42 | 35, 41 | eqeq12d 2751 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = 𝑧 → (( bday
‘𝑏) = ( bday “ {𝑦 ∈ Ons ∣ 𝑦 <s 𝑏}) ↔ ( bday
‘𝑧) = ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑧}))) |
| 43 | 34, 42 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 = 𝑧 → ((𝑏 <s 𝑎 → ( bday
‘𝑏) = ( bday “ {𝑦 ∈ Ons ∣ 𝑦 <s 𝑏})) ↔ (𝑧 <s 𝑎 → ( bday
‘𝑧) = ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑧})))) |
| 44 | 43 | rspccv 3598 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏})) → (𝑧 ∈ Ons →
(𝑧 <s 𝑎 → ( bday
‘𝑧) = ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑧})))) |
| 45 | 44 | imp 406 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏})) ∧ 𝑧 ∈ Ons) →
(𝑧 <s 𝑎 → ( bday
‘𝑧) = ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑧}))) |
| 46 | 45 | adantll 714 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) ∧ 𝑧 ∈ Ons) →
(𝑧 <s 𝑎 → ( bday
‘𝑧) = ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑧}))) |
| 47 | 46 | impr 454 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) ∧ (𝑧 ∈ Ons ∧
𝑧 <s 𝑎)) → ( bday
‘𝑧) = ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑧})) |
| 48 | | simplrr 777 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) ∧ (𝑧 ∈ Ons ∧
𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑧 <s 𝑎) |
| 49 | | onsno 28208 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ Ons →
𝑥 ∈ No ) |
| 50 | 49 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) ∧ (𝑧 ∈ Ons ∧
𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑥 ∈
No ) |
| 51 | | simplrl 776 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) ∧ (𝑧 ∈ Ons ∧
𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑧 ∈
Ons) |
| 52 | | onsno 28208 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ∈ Ons →
𝑧 ∈ No ) |
| 53 | 51, 52 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) ∧ (𝑧 ∈ Ons ∧
𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑧 ∈
No ) |
| 54 | | simplll 774 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) ∧ (𝑧 ∈ Ons ∧
𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑎 ∈
Ons) |
| 55 | 54, 17 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) ∧ (𝑧 ∈ Ons ∧
𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑎 ∈
No ) |
| 56 | | slttr 27711 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈
No ∧ 𝑧 ∈
No ∧ 𝑎 ∈ No )
→ ((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑎) → 𝑥 <s 𝑎)) |
| 57 | 50, 53, 55, 56 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) ∧ (𝑧 ∈ Ons ∧
𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → ((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑎) → 𝑥 <s 𝑎)) |
| 58 | 48, 57 | mpan2d 694 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) ∧ (𝑧 ∈ Ons ∧
𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → (𝑥 <s 𝑧 → 𝑥 <s 𝑎)) |
| 59 | 58 | ss2rabdv 4051 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) ∧ (𝑧 ∈ Ons ∧
𝑧 <s 𝑎)) → {𝑥 ∈ Ons ∣ 𝑥 <s 𝑧} ⊆ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎}) |
| 60 | | imass2 6089 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝑥 ∈ Ons ∣
𝑥 <s 𝑧} ⊆ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎} → ( bday
“ {𝑥 ∈
Ons ∣ 𝑥
<s 𝑧}) ⊆ ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎})) |
| 61 | 59, 60 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) ∧ (𝑧 ∈ Ons ∧
𝑧 <s 𝑎)) → ( bday
“ {𝑥 ∈
Ons ∣ 𝑥
<s 𝑧}) ⊆ ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎})) |
| 62 | 47, 61 | eqsstrd 3993 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) ∧ (𝑧 ∈ Ons ∧
𝑧 <s 𝑎)) → ( bday
‘𝑧) ⊆
( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎})) |
| 63 | 62 | sseld 3957 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) ∧ (𝑧 ∈ Ons ∧
𝑧 <s 𝑎)) → (𝑝 ∈ ( bday
‘𝑧) →
𝑝 ∈ ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎}))) |
| 64 | | eleq2 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝑧) = 𝑞 → (𝑝 ∈ ( bday
‘𝑧) ↔
𝑝 ∈ 𝑞)) |
| 65 | 64 | imbi1d 341 |
. . . . . . . . . . . . . . . 16
⊢ (( bday ‘𝑧) = 𝑞 → ((𝑝 ∈ ( bday
‘𝑧) →
𝑝 ∈ ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎})) ↔ (𝑝 ∈ 𝑞 → 𝑝 ∈ ( bday
“ {𝑥 ∈
Ons ∣ 𝑥
<s 𝑎})))) |
| 66 | 65 | bicomd 223 |
. . . . . . . . . . . . . . 15
⊢ (( bday ‘𝑧) = 𝑞 → ((𝑝 ∈ 𝑞 → 𝑝 ∈ ( bday
“ {𝑥 ∈
Ons ∣ 𝑥
<s 𝑎})) ↔ (𝑝 ∈ (
bday ‘𝑧)
→ 𝑝 ∈ ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎})))) |
| 67 | 63, 66 | syl5ibrcom 247 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) ∧ (𝑧 ∈ Ons ∧
𝑧 <s 𝑎)) → (( bday
‘𝑧) = 𝑞 → (𝑝 ∈ 𝑞 → 𝑝 ∈ ( bday
“ {𝑥 ∈
Ons ∣ 𝑥
<s 𝑎})))) |
| 68 | 67 | expr 456 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) ∧ 𝑧 ∈ Ons) →
(𝑧 <s 𝑎 → (( bday
‘𝑧) = 𝑞 → (𝑝 ∈ 𝑞 → 𝑝 ∈ ( bday
“ {𝑥 ∈
Ons ∣ 𝑥
<s 𝑎}))))) |
| 69 | 68 | impd 410 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) ∧ 𝑧 ∈ Ons) →
((𝑧 <s 𝑎 ∧ (
bday ‘𝑧) =
𝑞) → (𝑝 ∈ 𝑞 → 𝑝 ∈ ( bday
“ {𝑥 ∈
Ons ∣ 𝑥
<s 𝑎})))) |
| 70 | 69 | rexlimdva 3141 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) →
(∃𝑧 ∈
Ons (𝑧 <s
𝑎 ∧ ( bday ‘𝑧) = 𝑞) → (𝑝 ∈ 𝑞 → 𝑝 ∈ ( bday
“ {𝑥 ∈
Ons ∣ 𝑥
<s 𝑎})))) |
| 71 | 33, 70 | biimtrid 242 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) → (𝑞 ∈ (
bday “ {𝑥
∈ Ons ∣ 𝑥 <s 𝑎}) → (𝑝 ∈ 𝑞 → 𝑝 ∈ ( bday
“ {𝑥 ∈
Ons ∣ 𝑥
<s 𝑎})))) |
| 72 | 71 | impcomd 411 |
. . . . . . . . 9
⊢ ((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) → ((𝑝 ∈ 𝑞 ∧ 𝑞 ∈ ( bday
“ {𝑥 ∈
Ons ∣ 𝑥
<s 𝑎})) → 𝑝 ∈ (
bday “ {𝑥
∈ Ons ∣ 𝑥 <s 𝑎}))) |
| 73 | 72 | alrimivv 1928 |
. . . . . . . 8
⊢ ((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) →
∀𝑝∀𝑞((𝑝 ∈ 𝑞 ∧ 𝑞 ∈ ( bday
“ {𝑥 ∈
Ons ∣ 𝑥
<s 𝑎})) → 𝑝 ∈ (
bday “ {𝑥
∈ Ons ∣ 𝑥 <s 𝑎}))) |
| 74 | | imassrn 6058 |
. . . . . . . . . . 11
⊢ ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎}) ⊆ ran bday
|
| 75 | | bdayrn 27739 |
. . . . . . . . . . 11
⊢ ran bday = On |
| 76 | 74, 75 | sseqtri 4007 |
. . . . . . . . . 10
⊢ ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎}) ⊆ On |
| 77 | | dford5 7778 |
. . . . . . . . . 10
⊢ (Ord
( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎}) ↔ (( bday
“ {𝑥 ∈
Ons ∣ 𝑥
<s 𝑎}) ⊆ On ∧
Tr ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎}))) |
| 78 | 76, 77 | mpbiran 709 |
. . . . . . . . 9
⊢ (Ord
( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎}) ↔ Tr ( bday
“ {𝑥 ∈
Ons ∣ 𝑥
<s 𝑎})) |
| 79 | | dftr2 5231 |
. . . . . . . . 9
⊢ (Tr
( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎}) ↔ ∀𝑝∀𝑞((𝑝 ∈ 𝑞 ∧ 𝑞 ∈ ( bday
“ {𝑥 ∈
Ons ∣ 𝑥
<s 𝑎})) → 𝑝 ∈ (
bday “ {𝑥
∈ Ons ∣ 𝑥 <s 𝑎}))) |
| 80 | 78, 79 | bitri 275 |
. . . . . . . 8
⊢ (Ord
( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎}) ↔ ∀𝑝∀𝑞((𝑝 ∈ 𝑞 ∧ 𝑞 ∈ ( bday
“ {𝑥 ∈
Ons ∣ 𝑥
<s 𝑎})) → 𝑝 ∈ (
bday “ {𝑥
∈ Ons ∣ 𝑥 <s 𝑎}))) |
| 81 | 73, 80 | sylibr 234 |
. . . . . . 7
⊢ ((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) → Ord
( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎})) |
| 82 | | bdayfun 27736 |
. . . . . . . 8
⊢ Fun bday |
| 83 | | funimaexg 6623 |
. . . . . . . 8
⊢ ((Fun
bday ∧ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎} ∈ V) → (
bday “ {𝑥
∈ Ons ∣ 𝑥 <s 𝑎}) ∈ V) |
| 84 | 82, 20, 83 | sylancr 587 |
. . . . . . 7
⊢ ((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) → ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎}) ∈ V) |
| 85 | | elon2 6363 |
. . . . . . 7
⊢ (( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎}) ∈ On ↔ (Ord ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎}) ∧ ( bday
“ {𝑥 ∈
Ons ∣ 𝑥
<s 𝑎}) ∈
V)) |
| 86 | 81, 84, 85 | sylanbrc 583 |
. . . . . 6
⊢ ((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) → ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎}) ∈ On) |
| 87 | | un0 4369 |
. . . . . . . . 9
⊢ ({𝑥 ∈ Ons ∣
𝑥 <s 𝑎} ∪ ∅) = {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎} |
| 88 | 87 | imaeq2i 6045 |
. . . . . . . 8
⊢ ( bday “ ({𝑥 ∈ Ons ∣ 𝑥 <s 𝑎} ∪ ∅)) = (
bday “ {𝑥
∈ Ons ∣ 𝑥 <s 𝑎}) |
| 89 | 88 | eqimssi 4019 |
. . . . . . 7
⊢ ( bday “ ({𝑥 ∈ Ons ∣ 𝑥 <s 𝑎} ∪ ∅)) ⊆ ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎}) |
| 90 | | scutbdaybnd 27779 |
. . . . . . 7
⊢ (({𝑥 ∈ Ons ∣
𝑥 <s 𝑎} <<s ∅ ∧ ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎}) ∈ On ∧ (
bday “ ({𝑥
∈ Ons ∣ 𝑥 <s 𝑎} ∪ ∅)) ⊆ ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎})) → ( bday
‘({𝑥 ∈
Ons ∣ 𝑥
<s 𝑎} |s ∅))
⊆ ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎})) |
| 91 | 89, 90 | mp3an3 1452 |
. . . . . 6
⊢ (({𝑥 ∈ Ons ∣
𝑥 <s 𝑎} <<s ∅ ∧ ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎}) ∈ On) → (
bday ‘({𝑥
∈ Ons ∣ 𝑥 <s 𝑎} |s ∅)) ⊆ ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎})) |
| 92 | 27, 86, 91 | syl2anc 584 |
. . . . 5
⊢ ((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) → ( bday ‘({𝑥 ∈ Ons ∣ 𝑥 <s 𝑎} |s ∅)) ⊆ ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎})) |
| 93 | 16, 92 | eqsstrd 3993 |
. . . 4
⊢ ((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) → ( bday ‘𝑎) ⊆ ( bday
“ {𝑥 ∈
Ons ∣ 𝑥
<s 𝑎})) |
| 94 | | simpr 484 |
. . . . . . . 8
⊢ (((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) ∧ 𝑧 ∈ Ons) →
𝑧 ∈
Ons) |
| 95 | | simpll 766 |
. . . . . . . 8
⊢ (((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) ∧ 𝑧 ∈ Ons) →
𝑎 ∈
Ons) |
| 96 | | onslt 28220 |
. . . . . . . 8
⊢ ((𝑧 ∈ Ons ∧
𝑎 ∈ Ons)
→ (𝑧 <s 𝑎 ↔ (
bday ‘𝑧)
∈ ( bday ‘𝑎))) |
| 97 | 94, 95, 96 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) ∧ 𝑧 ∈ Ons) →
(𝑧 <s 𝑎 ↔ ( bday
‘𝑧) ∈
( bday ‘𝑎))) |
| 98 | 97 | biimpd 229 |
. . . . . 6
⊢ (((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) ∧ 𝑧 ∈ Ons) →
(𝑧 <s 𝑎 → ( bday
‘𝑧) ∈
( bday ‘𝑎))) |
| 99 | 98 | ralrimiva 3132 |
. . . . 5
⊢ ((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) →
∀𝑧 ∈
Ons (𝑧 <s
𝑎 → ( bday ‘𝑧) ∈ ( bday
‘𝑎))) |
| 100 | | bdaydm 27738 |
. . . . . . . 8
⊢ dom bday = No
|
| 101 | 23, 100 | sseqtrri 4008 |
. . . . . . 7
⊢ {𝑥 ∈ Ons ∣
𝑥 <s 𝑎} ⊆ dom bday
|
| 102 | | funimass4 6943 |
. . . . . . 7
⊢ ((Fun
bday ∧ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎} ⊆ dom bday
) → (( bday “ {𝑥 ∈ Ons ∣
𝑥 <s 𝑎}) ⊆ ( bday
‘𝑎) ↔
∀𝑧 ∈ {𝑥 ∈ Ons ∣
𝑥 <s 𝑎} ( bday
‘𝑧) ∈
( bday ‘𝑎))) |
| 103 | 82, 101, 102 | mp2an 692 |
. . . . . 6
⊢ (( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎}) ⊆ ( bday
‘𝑎) ↔
∀𝑧 ∈ {𝑥 ∈ Ons ∣
𝑥 <s 𝑎} ( bday
‘𝑧) ∈
( bday ‘𝑎)) |
| 104 | 31 | ralrab 3677 |
. . . . . 6
⊢
(∀𝑧 ∈
{𝑥 ∈ Ons
∣ 𝑥 <s 𝑎} ( bday
‘𝑧) ∈
( bday ‘𝑎) ↔ ∀𝑧 ∈ Ons (𝑧 <s 𝑎 → ( bday
‘𝑧) ∈
( bday ‘𝑎))) |
| 105 | 103, 104 | bitri 275 |
. . . . 5
⊢ (( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎}) ⊆ ( bday
‘𝑎) ↔
∀𝑧 ∈
Ons (𝑧 <s
𝑎 → ( bday ‘𝑧) ∈ ( bday
‘𝑎))) |
| 106 | 99, 105 | sylibr 234 |
. . . 4
⊢ ((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) → ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝑎}) ⊆ ( bday
‘𝑎)) |
| 107 | 93, 106 | eqssd 3976 |
. . 3
⊢ ((𝑎 ∈ Ons ∧
∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏}))) → ( bday ‘𝑎) = ( bday
“ {𝑥 ∈
Ons ∣ 𝑥
<s 𝑎})) |
| 108 | 107 | ex 412 |
. 2
⊢ (𝑎 ∈ Ons →
(∀𝑏 ∈
Ons (𝑏 <s
𝑎 → ( bday ‘𝑏) = ( bday
“ {𝑦 ∈
Ons ∣ 𝑦
<s 𝑏})) → ( bday ‘𝑎) = ( bday
“ {𝑥 ∈
Ons ∣ 𝑥
<s 𝑎}))) |
| 109 | 8, 13, 108 | onsis 28224 |
1
⊢ (𝐴 ∈ Ons →
( bday ‘𝐴) = ( bday
“ {𝑥 ∈
Ons ∣ 𝑥
<s 𝐴})) |