MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayon Structured version   Visualization version   GIF version

Theorem bdayon 28180
Description: The birthday of a surreal ordinal is the set of all previous ordinal birthdays. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
bdayon (𝐴 ∈ Ons → ( bday 𝐴) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝐴}))
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdayon
Dummy variables 𝑎 𝑏 𝑝 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . 3 (𝑎 = 𝑏 → ( bday 𝑎) = ( bday 𝑏))
2 breq2 5096 . . . . . 6 (𝑎 = 𝑏 → (𝑥 <s 𝑎𝑥 <s 𝑏))
32rabbidv 3402 . . . . 5 (𝑎 = 𝑏 → {𝑥 ∈ Ons𝑥 <s 𝑎} = {𝑥 ∈ Ons𝑥 <s 𝑏})
4 breq1 5095 . . . . . 6 (𝑥 = 𝑦 → (𝑥 <s 𝑏𝑦 <s 𝑏))
54cbvrabv 3405 . . . . 5 {𝑥 ∈ Ons𝑥 <s 𝑏} = {𝑦 ∈ Ons𝑦 <s 𝑏}
63, 5eqtrdi 2780 . . . 4 (𝑎 = 𝑏 → {𝑥 ∈ Ons𝑥 <s 𝑎} = {𝑦 ∈ Ons𝑦 <s 𝑏})
76imaeq2d 6011 . . 3 (𝑎 = 𝑏 → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))
81, 7eqeq12d 2745 . 2 (𝑎 = 𝑏 → (( bday 𝑎) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})))
9 fveq2 6822 . . 3 (𝑎 = 𝐴 → ( bday 𝑎) = ( bday 𝐴))
10 breq2 5096 . . . . 5 (𝑎 = 𝐴 → (𝑥 <s 𝑎𝑥 <s 𝐴))
1110rabbidv 3402 . . . 4 (𝑎 = 𝐴 → {𝑥 ∈ Ons𝑥 <s 𝑎} = {𝑥 ∈ Ons𝑥 <s 𝐴})
1211imaeq2d 6011 . . 3 (𝑎 = 𝐴 → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝐴}))
139, 12eqeq12d 2745 . 2 (𝑎 = 𝐴 → (( bday 𝑎) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ( bday 𝐴) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝐴})))
14 onscutlt 28172 . . . . . . 7 (𝑎 ∈ Ons𝑎 = ({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅))
1514adantr 480 . . . . . 6 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → 𝑎 = ({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅))
1615fveq2d 6826 . . . . 5 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday 𝑎) = ( bday ‘({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅)))
17 onsno 28163 . . . . . . . . . 10 (𝑎 ∈ Ons𝑎 No )
18 sltonex 28170 . . . . . . . . . 10 (𝑎 No → {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ V)
1917, 18syl 17 . . . . . . . . 9 (𝑎 ∈ Ons → {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ V)
2019adantr 480 . . . . . . . 8 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ V)
21 ssrab2 4031 . . . . . . . . . 10 {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ Ons
22 onssno 28162 . . . . . . . . . 10 Ons No
2321, 22sstri 3945 . . . . . . . . 9 {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ No
2423a1i 11 . . . . . . . 8 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ No )
2520, 24elpwd 4557 . . . . . . 7 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ 𝒫 No )
26 nulssgt 27710 . . . . . . 7 ({𝑥 ∈ Ons𝑥 <s 𝑎} ∈ 𝒫 No → {𝑥 ∈ Ons𝑥 <s 𝑎} <<s ∅)
2725, 26syl 17 . . . . . 6 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → {𝑥 ∈ Ons𝑥 <s 𝑎} <<s ∅)
28 bdayfn 27683 . . . . . . . . . . . . 13 bday Fn No
29 fvelimab 6895 . . . . . . . . . . . . 13 (( bday Fn No ∧ {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ No ) → (𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∃𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) = 𝑞))
3028, 23, 29mp2an 692 . . . . . . . . . . . 12 (𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∃𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) = 𝑞)
31 breq1 5095 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥 <s 𝑎𝑧 <s 𝑎))
3231rexrab 3656 . . . . . . . . . . . 12 (∃𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) = 𝑞 ↔ ∃𝑧 ∈ Ons (𝑧 <s 𝑎 ∧ ( bday 𝑧) = 𝑞))
3330, 32bitri 275 . . . . . . . . . . 11 (𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∃𝑧 ∈ Ons (𝑧 <s 𝑎 ∧ ( bday 𝑧) = 𝑞))
34 breq1 5095 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑧 → (𝑏 <s 𝑎𝑧 <s 𝑎))
35 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑧 → ( bday 𝑏) = ( bday 𝑧))
36 breq2 5096 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = 𝑧 → (𝑦 <s 𝑏𝑦 <s 𝑧))
3736rabbidv 3402 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = 𝑧 → {𝑦 ∈ Ons𝑦 <s 𝑏} = {𝑦 ∈ Ons𝑦 <s 𝑧})
38 breq1 5095 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑦 → (𝑥 <s 𝑧𝑦 <s 𝑧))
3938cbvrabv 3405 . . . . . . . . . . . . . . . . . . . . . . . . 25 {𝑥 ∈ Ons𝑥 <s 𝑧} = {𝑦 ∈ Ons𝑦 <s 𝑧}
4037, 39eqtr4di 2782 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑧 → {𝑦 ∈ Ons𝑦 <s 𝑏} = {𝑥 ∈ Ons𝑥 <s 𝑧})
4140imaeq2d 6011 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑧 → ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}))
4235, 41eqeq12d 2745 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑧 → (( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}) ↔ ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧})))
4334, 42imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑧 → ((𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})) ↔ (𝑧 <s 𝑎 → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}))))
4443rspccv 3574 . . . . . . . . . . . . . . . . . . . 20 (∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})) → (𝑧 ∈ Ons → (𝑧 <s 𝑎 → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}))))
4544imp 406 . . . . . . . . . . . . . . . . . . 19 ((∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧})))
4645adantll 714 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧})))
4746impr 454 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}))
48 simplrr 777 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑧 <s 𝑎)
49 onsno 28163 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ Ons𝑥 No )
5049adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑥 No )
51 simplrl 776 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑧 ∈ Ons)
52 onsno 28163 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ Ons𝑧 No )
5351, 52syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑧 No )
54 simplll 774 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑎 ∈ Ons)
5554, 17syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑎 No )
56 slttr 27657 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 No 𝑧 No 𝑎 No ) → ((𝑥 <s 𝑧𝑧 <s 𝑎) → 𝑥 <s 𝑎))
5750, 53, 55, 56syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → ((𝑥 <s 𝑧𝑧 <s 𝑎) → 𝑥 <s 𝑎))
5848, 57mpan2d 694 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → (𝑥 <s 𝑧𝑥 <s 𝑎))
5958ss2rabdv 4027 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → {𝑥 ∈ Ons𝑥 <s 𝑧} ⊆ {𝑥 ∈ Ons𝑥 <s 𝑎})
60 imass2 6053 . . . . . . . . . . . . . . . . . 18 ({𝑥 ∈ Ons𝑥 <s 𝑧} ⊆ {𝑥 ∈ Ons𝑥 <s 𝑎} → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
6159, 60syl 17 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
6247, 61eqsstrd 3970 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → ( bday 𝑧) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
6362sseld 3934 . . . . . . . . . . . . . . 15 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → (𝑝 ∈ ( bday 𝑧) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
64 eleq2 2817 . . . . . . . . . . . . . . . . 17 (( bday 𝑧) = 𝑞 → (𝑝 ∈ ( bday 𝑧) ↔ 𝑝𝑞))
6564imbi1d 341 . . . . . . . . . . . . . . . 16 (( bday 𝑧) = 𝑞 → ((𝑝 ∈ ( bday 𝑧) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) ↔ (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
6665bicomd 223 . . . . . . . . . . . . . . 15 (( bday 𝑧) = 𝑞 → ((𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) ↔ (𝑝 ∈ ( bday 𝑧) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
6763, 66syl5ibrcom 247 . . . . . . . . . . . . . 14 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → (( bday 𝑧) = 𝑞 → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
6867expr 456 . . . . . . . . . . . . 13 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 → (( bday 𝑧) = 𝑞 → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))))
6968impd 410 . . . . . . . . . . . 12 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → ((𝑧 <s 𝑎 ∧ ( bday 𝑧) = 𝑞) → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
7069rexlimdva 3130 . . . . . . . . . . 11 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → (∃𝑧 ∈ Ons (𝑧 <s 𝑎 ∧ ( bday 𝑧) = 𝑞) → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
7133, 70biimtrid 242 . . . . . . . . . 10 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → (𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
7271impcomd 411 . . . . . . . . 9 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ((𝑝𝑞𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
7372alrimivv 1928 . . . . . . . 8 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ∀𝑝𝑞((𝑝𝑞𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
74 imassrn 6022 . . . . . . . . . . 11 ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ran bday
75 bdayrn 27685 . . . . . . . . . . 11 ran bday = On
7674, 75sseqtri 3984 . . . . . . . . . 10 ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ On
77 dford5 7720 . . . . . . . . . 10 (Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ On ∧ Tr ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
7876, 77mpbiran 709 . . . . . . . . 9 (Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ Tr ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
79 dftr2 5201 . . . . . . . . 9 (Tr ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∀𝑝𝑞((𝑝𝑞𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
8078, 79bitri 275 . . . . . . . 8 (Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∀𝑝𝑞((𝑝𝑞𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
8173, 80sylibr 234 . . . . . . 7 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
82 bdayfun 27682 . . . . . . . 8 Fun bday
83 funimaexg 6569 . . . . . . . 8 ((Fun bday ∧ {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ V) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ V)
8482, 20, 83sylancr 587 . . . . . . 7 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ V)
85 elon2 6318 . . . . . . 7 (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ On ↔ (Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∧ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ V))
8681, 84, 85sylanbrc 583 . . . . . 6 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ On)
87 un0 4345 . . . . . . . . 9 ({𝑥 ∈ Ons𝑥 <s 𝑎} ∪ ∅) = {𝑥 ∈ Ons𝑥 <s 𝑎}
8887imaeq2i 6009 . . . . . . . 8 ( bday “ ({𝑥 ∈ Ons𝑥 <s 𝑎} ∪ ∅)) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})
8988eqimssi 3996 . . . . . . 7 ( bday “ ({𝑥 ∈ Ons𝑥 <s 𝑎} ∪ ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})
90 scutbdaybnd 27727 . . . . . . 7 (({𝑥 ∈ Ons𝑥 <s 𝑎} <<s ∅ ∧ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ On ∧ ( bday “ ({𝑥 ∈ Ons𝑥 <s 𝑎} ∪ ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → ( bday ‘({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
9189, 90mp3an3 1452 . . . . . 6 (({𝑥 ∈ Ons𝑥 <s 𝑎} <<s ∅ ∧ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ On) → ( bday ‘({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
9227, 86, 91syl2anc 584 . . . . 5 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday ‘({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
9316, 92eqsstrd 3970 . . . 4 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday 𝑎) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
94 simpr 484 . . . . . . . 8 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → 𝑧 ∈ Ons)
95 simpll 766 . . . . . . . 8 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → 𝑎 ∈ Ons)
96 onslt 28175 . . . . . . . 8 ((𝑧 ∈ Ons𝑎 ∈ Ons) → (𝑧 <s 𝑎 ↔ ( bday 𝑧) ∈ ( bday 𝑎)))
9794, 95, 96syl2anc 584 . . . . . . 7 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 ↔ ( bday 𝑧) ∈ ( bday 𝑎)))
9897biimpd 229 . . . . . 6 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 → ( bday 𝑧) ∈ ( bday 𝑎)))
9998ralrimiva 3121 . . . . 5 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ∀𝑧 ∈ Ons (𝑧 <s 𝑎 → ( bday 𝑧) ∈ ( bday 𝑎)))
100 bdaydm 27684 . . . . . . . 8 dom bday = No
10123, 100sseqtrri 3985 . . . . . . 7 {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ dom bday
102 funimass4 6887 . . . . . . 7 ((Fun bday ∧ {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ dom bday ) → (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ( bday 𝑎) ↔ ∀𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) ∈ ( bday 𝑎)))
10382, 101, 102mp2an 692 . . . . . 6 (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ( bday 𝑎) ↔ ∀𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) ∈ ( bday 𝑎))
10431ralrab 3654 . . . . . 6 (∀𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) ∈ ( bday 𝑎) ↔ ∀𝑧 ∈ Ons (𝑧 <s 𝑎 → ( bday 𝑧) ∈ ( bday 𝑎)))
105103, 104bitri 275 . . . . 5 (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ( bday 𝑎) ↔ ∀𝑧 ∈ Ons (𝑧 <s 𝑎 → ( bday 𝑧) ∈ ( bday 𝑎)))
10699, 105sylibr 234 . . . 4 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ( bday 𝑎))
10793, 106eqssd 3953 . . 3 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday 𝑎) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
108107ex 412 . 2 (𝑎 ∈ Ons → (∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})) → ( bday 𝑎) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
1098, 13, 108onsis 28179 1 (𝐴 ∈ Ons → ( bday 𝐴) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cun 3901  wss 3903  c0 4284  𝒫 cpw 4551   class class class wbr 5092  Tr wtr 5199  dom cdm 5619  ran crn 5620  cima 5622  Ord word 6306  Oncon0 6307  Fun wfun 6476   Fn wfn 6477  cfv 6482  (class class class)co 7349   No csur 27549   <s cslt 27550   bday cbday 27551   <<s csslt 27691   |s cscut 27693  Onscons 28159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-1o 8388  df-2o 8389  df-no 27552  df-slt 27553  df-bday 27554  df-sle 27655  df-sslt 27692  df-scut 27694  df-made 27759  df-old 27760  df-new 27761  df-left 27762  df-right 27763  df-ons 28160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator