MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayon Structured version   Visualization version   GIF version

Theorem bdayon 28209
Description: The birthday of a surreal ordinal is the set of all previous ordinal birthdays. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
bdayon (𝐴 ∈ Ons → ( bday 𝐴) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝐴}))
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdayon
Dummy variables 𝑎 𝑏 𝑝 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . 3 (𝑎 = 𝑏 → ( bday 𝑎) = ( bday 𝑏))
2 breq2 5093 . . . . . 6 (𝑎 = 𝑏 → (𝑥 <s 𝑎𝑥 <s 𝑏))
32rabbidv 3402 . . . . 5 (𝑎 = 𝑏 → {𝑥 ∈ Ons𝑥 <s 𝑎} = {𝑥 ∈ Ons𝑥 <s 𝑏})
4 breq1 5092 . . . . . 6 (𝑥 = 𝑦 → (𝑥 <s 𝑏𝑦 <s 𝑏))
54cbvrabv 3405 . . . . 5 {𝑥 ∈ Ons𝑥 <s 𝑏} = {𝑦 ∈ Ons𝑦 <s 𝑏}
63, 5eqtrdi 2782 . . . 4 (𝑎 = 𝑏 → {𝑥 ∈ Ons𝑥 <s 𝑎} = {𝑦 ∈ Ons𝑦 <s 𝑏})
76imaeq2d 6008 . . 3 (𝑎 = 𝑏 → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))
81, 7eqeq12d 2747 . 2 (𝑎 = 𝑏 → (( bday 𝑎) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})))
9 fveq2 6822 . . 3 (𝑎 = 𝐴 → ( bday 𝑎) = ( bday 𝐴))
10 breq2 5093 . . . . 5 (𝑎 = 𝐴 → (𝑥 <s 𝑎𝑥 <s 𝐴))
1110rabbidv 3402 . . . 4 (𝑎 = 𝐴 → {𝑥 ∈ Ons𝑥 <s 𝑎} = {𝑥 ∈ Ons𝑥 <s 𝐴})
1211imaeq2d 6008 . . 3 (𝑎 = 𝐴 → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝐴}))
139, 12eqeq12d 2747 . 2 (𝑎 = 𝐴 → (( bday 𝑎) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ( bday 𝐴) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝐴})))
14 onscutlt 28201 . . . . . . 7 (𝑎 ∈ Ons𝑎 = ({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅))
1514adantr 480 . . . . . 6 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → 𝑎 = ({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅))
1615fveq2d 6826 . . . . 5 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday 𝑎) = ( bday ‘({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅)))
17 onsno 28192 . . . . . . . . . 10 (𝑎 ∈ Ons𝑎 No )
18 sltonex 28199 . . . . . . . . . 10 (𝑎 No → {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ V)
1917, 18syl 17 . . . . . . . . 9 (𝑎 ∈ Ons → {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ V)
2019adantr 480 . . . . . . . 8 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ V)
21 ssrab2 4027 . . . . . . . . . 10 {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ Ons
22 onssno 28191 . . . . . . . . . 10 Ons No
2321, 22sstri 3939 . . . . . . . . 9 {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ No
2423a1i 11 . . . . . . . 8 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ No )
2520, 24elpwd 4553 . . . . . . 7 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ 𝒫 No )
26 nulssgt 27739 . . . . . . 7 ({𝑥 ∈ Ons𝑥 <s 𝑎} ∈ 𝒫 No → {𝑥 ∈ Ons𝑥 <s 𝑎} <<s ∅)
2725, 26syl 17 . . . . . 6 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → {𝑥 ∈ Ons𝑥 <s 𝑎} <<s ∅)
28 bdayfn 27712 . . . . . . . . . . . . 13 bday Fn No
29 fvelimab 6894 . . . . . . . . . . . . 13 (( bday Fn No ∧ {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ No ) → (𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∃𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) = 𝑞))
3028, 23, 29mp2an 692 . . . . . . . . . . . 12 (𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∃𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) = 𝑞)
31 breq1 5092 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥 <s 𝑎𝑧 <s 𝑎))
3231rexrab 3650 . . . . . . . . . . . 12 (∃𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) = 𝑞 ↔ ∃𝑧 ∈ Ons (𝑧 <s 𝑎 ∧ ( bday 𝑧) = 𝑞))
3330, 32bitri 275 . . . . . . . . . . 11 (𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∃𝑧 ∈ Ons (𝑧 <s 𝑎 ∧ ( bday 𝑧) = 𝑞))
34 breq1 5092 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑧 → (𝑏 <s 𝑎𝑧 <s 𝑎))
35 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑧 → ( bday 𝑏) = ( bday 𝑧))
36 breq2 5093 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = 𝑧 → (𝑦 <s 𝑏𝑦 <s 𝑧))
3736rabbidv 3402 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = 𝑧 → {𝑦 ∈ Ons𝑦 <s 𝑏} = {𝑦 ∈ Ons𝑦 <s 𝑧})
38 breq1 5092 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑦 → (𝑥 <s 𝑧𝑦 <s 𝑧))
3938cbvrabv 3405 . . . . . . . . . . . . . . . . . . . . . . . . 25 {𝑥 ∈ Ons𝑥 <s 𝑧} = {𝑦 ∈ Ons𝑦 <s 𝑧}
4037, 39eqtr4di 2784 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑧 → {𝑦 ∈ Ons𝑦 <s 𝑏} = {𝑥 ∈ Ons𝑥 <s 𝑧})
4140imaeq2d 6008 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑧 → ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}))
4235, 41eqeq12d 2747 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑧 → (( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}) ↔ ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧})))
4334, 42imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑧 → ((𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})) ↔ (𝑧 <s 𝑎 → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}))))
4443rspccv 3569 . . . . . . . . . . . . . . . . . . . 20 (∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})) → (𝑧 ∈ Ons → (𝑧 <s 𝑎 → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}))))
4544imp 406 . . . . . . . . . . . . . . . . . . 19 ((∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧})))
4645adantll 714 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧})))
4746impr 454 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}))
48 simplrr 777 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑧 <s 𝑎)
49 onsno 28192 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ Ons𝑥 No )
5049adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑥 No )
51 simplrl 776 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑧 ∈ Ons)
52 onsno 28192 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ Ons𝑧 No )
5351, 52syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑧 No )
54 simplll 774 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑎 ∈ Ons)
5554, 17syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑎 No )
56 slttr 27686 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 No 𝑧 No 𝑎 No ) → ((𝑥 <s 𝑧𝑧 <s 𝑎) → 𝑥 <s 𝑎))
5750, 53, 55, 56syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → ((𝑥 <s 𝑧𝑧 <s 𝑎) → 𝑥 <s 𝑎))
5848, 57mpan2d 694 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → (𝑥 <s 𝑧𝑥 <s 𝑎))
5958ss2rabdv 4021 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → {𝑥 ∈ Ons𝑥 <s 𝑧} ⊆ {𝑥 ∈ Ons𝑥 <s 𝑎})
60 imass2 6050 . . . . . . . . . . . . . . . . . 18 ({𝑥 ∈ Ons𝑥 <s 𝑧} ⊆ {𝑥 ∈ Ons𝑥 <s 𝑎} → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
6159, 60syl 17 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
6247, 61eqsstrd 3964 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → ( bday 𝑧) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
6362sseld 3928 . . . . . . . . . . . . . . 15 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → (𝑝 ∈ ( bday 𝑧) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
64 eleq2 2820 . . . . . . . . . . . . . . . . 17 (( bday 𝑧) = 𝑞 → (𝑝 ∈ ( bday 𝑧) ↔ 𝑝𝑞))
6564imbi1d 341 . . . . . . . . . . . . . . . 16 (( bday 𝑧) = 𝑞 → ((𝑝 ∈ ( bday 𝑧) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) ↔ (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
6665bicomd 223 . . . . . . . . . . . . . . 15 (( bday 𝑧) = 𝑞 → ((𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) ↔ (𝑝 ∈ ( bday 𝑧) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
6763, 66syl5ibrcom 247 . . . . . . . . . . . . . 14 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → (( bday 𝑧) = 𝑞 → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
6867expr 456 . . . . . . . . . . . . 13 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 → (( bday 𝑧) = 𝑞 → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))))
6968impd 410 . . . . . . . . . . . 12 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → ((𝑧 <s 𝑎 ∧ ( bday 𝑧) = 𝑞) → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
7069rexlimdva 3133 . . . . . . . . . . 11 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → (∃𝑧 ∈ Ons (𝑧 <s 𝑎 ∧ ( bday 𝑧) = 𝑞) → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
7133, 70biimtrid 242 . . . . . . . . . 10 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → (𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
7271impcomd 411 . . . . . . . . 9 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ((𝑝𝑞𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
7372alrimivv 1929 . . . . . . . 8 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ∀𝑝𝑞((𝑝𝑞𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
74 imassrn 6019 . . . . . . . . . . 11 ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ran bday
75 bdayrn 27714 . . . . . . . . . . 11 ran bday = On
7674, 75sseqtri 3978 . . . . . . . . . 10 ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ On
77 dford5 7717 . . . . . . . . . 10 (Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ On ∧ Tr ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
7876, 77mpbiran 709 . . . . . . . . 9 (Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ Tr ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
79 dftr2 5198 . . . . . . . . 9 (Tr ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∀𝑝𝑞((𝑝𝑞𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
8078, 79bitri 275 . . . . . . . 8 (Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∀𝑝𝑞((𝑝𝑞𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
8173, 80sylibr 234 . . . . . . 7 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
82 bdayfun 27711 . . . . . . . 8 Fun bday
83 funimaexg 6568 . . . . . . . 8 ((Fun bday ∧ {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ V) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ V)
8482, 20, 83sylancr 587 . . . . . . 7 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ V)
85 elon2 6317 . . . . . . 7 (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ On ↔ (Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∧ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ V))
8681, 84, 85sylanbrc 583 . . . . . 6 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ On)
87 un0 4341 . . . . . . . . 9 ({𝑥 ∈ Ons𝑥 <s 𝑎} ∪ ∅) = {𝑥 ∈ Ons𝑥 <s 𝑎}
8887imaeq2i 6006 . . . . . . . 8 ( bday “ ({𝑥 ∈ Ons𝑥 <s 𝑎} ∪ ∅)) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})
8988eqimssi 3990 . . . . . . 7 ( bday “ ({𝑥 ∈ Ons𝑥 <s 𝑎} ∪ ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})
90 scutbdaybnd 27756 . . . . . . 7 (({𝑥 ∈ Ons𝑥 <s 𝑎} <<s ∅ ∧ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ On ∧ ( bday “ ({𝑥 ∈ Ons𝑥 <s 𝑎} ∪ ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → ( bday ‘({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
9189, 90mp3an3 1452 . . . . . 6 (({𝑥 ∈ Ons𝑥 <s 𝑎} <<s ∅ ∧ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ On) → ( bday ‘({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
9227, 86, 91syl2anc 584 . . . . 5 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday ‘({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
9316, 92eqsstrd 3964 . . . 4 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday 𝑎) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
94 simpr 484 . . . . . . . 8 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → 𝑧 ∈ Ons)
95 simpll 766 . . . . . . . 8 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → 𝑎 ∈ Ons)
96 onslt 28204 . . . . . . . 8 ((𝑧 ∈ Ons𝑎 ∈ Ons) → (𝑧 <s 𝑎 ↔ ( bday 𝑧) ∈ ( bday 𝑎)))
9794, 95, 96syl2anc 584 . . . . . . 7 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 ↔ ( bday 𝑧) ∈ ( bday 𝑎)))
9897biimpd 229 . . . . . 6 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 → ( bday 𝑧) ∈ ( bday 𝑎)))
9998ralrimiva 3124 . . . . 5 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ∀𝑧 ∈ Ons (𝑧 <s 𝑎 → ( bday 𝑧) ∈ ( bday 𝑎)))
100 bdaydm 27713 . . . . . . . 8 dom bday = No
10123, 100sseqtrri 3979 . . . . . . 7 {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ dom bday
102 funimass4 6886 . . . . . . 7 ((Fun bday ∧ {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ dom bday ) → (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ( bday 𝑎) ↔ ∀𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) ∈ ( bday 𝑎)))
10382, 101, 102mp2an 692 . . . . . 6 (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ( bday 𝑎) ↔ ∀𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) ∈ ( bday 𝑎))
10431ralrab 3648 . . . . . 6 (∀𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) ∈ ( bday 𝑎) ↔ ∀𝑧 ∈ Ons (𝑧 <s 𝑎 → ( bday 𝑧) ∈ ( bday 𝑎)))
105103, 104bitri 275 . . . . 5 (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ( bday 𝑎) ↔ ∀𝑧 ∈ Ons (𝑧 <s 𝑎 → ( bday 𝑧) ∈ ( bday 𝑎)))
10699, 105sylibr 234 . . . 4 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ( bday 𝑎))
10793, 106eqssd 3947 . . 3 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday 𝑎) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
108107ex 412 . 2 (𝑎 ∈ Ons → (∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})) → ( bday 𝑎) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
1098, 13, 108onsis 28208 1 (𝐴 ∈ Ons → ( bday 𝐴) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cun 3895  wss 3897  c0 4280  𝒫 cpw 4547   class class class wbr 5089  Tr wtr 5196  dom cdm 5614  ran crn 5615  cima 5617  Ord word 6305  Oncon0 6306  Fun wfun 6475   Fn wfn 6476  cfv 6481  (class class class)co 7346   No csur 27578   <s cslt 27579   bday cbday 27580   <<s csslt 27720   |s cscut 27722  Onscons 28188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-made 27788  df-old 27789  df-new 27790  df-left 27791  df-right 27792  df-ons 28189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator