MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayon Structured version   Visualization version   GIF version

Theorem bdayon 28213
Description: The birthday of a surreal ordinal is the set of all previous ordinal birthdays. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
bdayon (𝐴 ∈ Ons → ( bday 𝐴) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝐴}))
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdayon
Dummy variables 𝑎 𝑏 𝑝 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . 3 (𝑎 = 𝑏 → ( bday 𝑎) = ( bday 𝑏))
2 breq2 5106 . . . . . 6 (𝑎 = 𝑏 → (𝑥 <s 𝑎𝑥 <s 𝑏))
32rabbidv 3410 . . . . 5 (𝑎 = 𝑏 → {𝑥 ∈ Ons𝑥 <s 𝑎} = {𝑥 ∈ Ons𝑥 <s 𝑏})
4 breq1 5105 . . . . . 6 (𝑥 = 𝑦 → (𝑥 <s 𝑏𝑦 <s 𝑏))
54cbvrabv 3413 . . . . 5 {𝑥 ∈ Ons𝑥 <s 𝑏} = {𝑦 ∈ Ons𝑦 <s 𝑏}
63, 5eqtrdi 2780 . . . 4 (𝑎 = 𝑏 → {𝑥 ∈ Ons𝑥 <s 𝑎} = {𝑦 ∈ Ons𝑦 <s 𝑏})
76imaeq2d 6020 . . 3 (𝑎 = 𝑏 → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))
81, 7eqeq12d 2745 . 2 (𝑎 = 𝑏 → (( bday 𝑎) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})))
9 fveq2 6840 . . 3 (𝑎 = 𝐴 → ( bday 𝑎) = ( bday 𝐴))
10 breq2 5106 . . . . 5 (𝑎 = 𝐴 → (𝑥 <s 𝑎𝑥 <s 𝐴))
1110rabbidv 3410 . . . 4 (𝑎 = 𝐴 → {𝑥 ∈ Ons𝑥 <s 𝑎} = {𝑥 ∈ Ons𝑥 <s 𝐴})
1211imaeq2d 6020 . . 3 (𝑎 = 𝐴 → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝐴}))
139, 12eqeq12d 2745 . 2 (𝑎 = 𝐴 → (( bday 𝑎) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ( bday 𝐴) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝐴})))
14 onscutlt 28205 . . . . . . 7 (𝑎 ∈ Ons𝑎 = ({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅))
1514adantr 480 . . . . . 6 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → 𝑎 = ({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅))
1615fveq2d 6844 . . . . 5 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday 𝑎) = ( bday ‘({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅)))
17 onsno 28196 . . . . . . . . . 10 (𝑎 ∈ Ons𝑎 No )
18 sltonex 28203 . . . . . . . . . 10 (𝑎 No → {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ V)
1917, 18syl 17 . . . . . . . . 9 (𝑎 ∈ Ons → {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ V)
2019adantr 480 . . . . . . . 8 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ V)
21 ssrab2 4039 . . . . . . . . . 10 {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ Ons
22 onssno 28195 . . . . . . . . . 10 Ons No
2321, 22sstri 3953 . . . . . . . . 9 {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ No
2423a1i 11 . . . . . . . 8 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ No )
2520, 24elpwd 4565 . . . . . . 7 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ 𝒫 No )
26 nulssgt 27744 . . . . . . 7 ({𝑥 ∈ Ons𝑥 <s 𝑎} ∈ 𝒫 No → {𝑥 ∈ Ons𝑥 <s 𝑎} <<s ∅)
2725, 26syl 17 . . . . . 6 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → {𝑥 ∈ Ons𝑥 <s 𝑎} <<s ∅)
28 bdayfn 27718 . . . . . . . . . . . . 13 bday Fn No
29 fvelimab 6915 . . . . . . . . . . . . 13 (( bday Fn No ∧ {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ No ) → (𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∃𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) = 𝑞))
3028, 23, 29mp2an 692 . . . . . . . . . . . 12 (𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∃𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) = 𝑞)
31 breq1 5105 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥 <s 𝑎𝑧 <s 𝑎))
3231rexrab 3664 . . . . . . . . . . . 12 (∃𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) = 𝑞 ↔ ∃𝑧 ∈ Ons (𝑧 <s 𝑎 ∧ ( bday 𝑧) = 𝑞))
3330, 32bitri 275 . . . . . . . . . . 11 (𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∃𝑧 ∈ Ons (𝑧 <s 𝑎 ∧ ( bday 𝑧) = 𝑞))
34 breq1 5105 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑧 → (𝑏 <s 𝑎𝑧 <s 𝑎))
35 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑧 → ( bday 𝑏) = ( bday 𝑧))
36 breq2 5106 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = 𝑧 → (𝑦 <s 𝑏𝑦 <s 𝑧))
3736rabbidv 3410 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = 𝑧 → {𝑦 ∈ Ons𝑦 <s 𝑏} = {𝑦 ∈ Ons𝑦 <s 𝑧})
38 breq1 5105 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑦 → (𝑥 <s 𝑧𝑦 <s 𝑧))
3938cbvrabv 3413 . . . . . . . . . . . . . . . . . . . . . . . . 25 {𝑥 ∈ Ons𝑥 <s 𝑧} = {𝑦 ∈ Ons𝑦 <s 𝑧}
4037, 39eqtr4di 2782 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑧 → {𝑦 ∈ Ons𝑦 <s 𝑏} = {𝑥 ∈ Ons𝑥 <s 𝑧})
4140imaeq2d 6020 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑧 → ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}))
4235, 41eqeq12d 2745 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑧 → (( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}) ↔ ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧})))
4334, 42imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑧 → ((𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})) ↔ (𝑧 <s 𝑎 → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}))))
4443rspccv 3582 . . . . . . . . . . . . . . . . . . . 20 (∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})) → (𝑧 ∈ Ons → (𝑧 <s 𝑎 → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}))))
4544imp 406 . . . . . . . . . . . . . . . . . . 19 ((∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧})))
4645adantll 714 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧})))
4746impr 454 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → ( bday 𝑧) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}))
48 simplrr 777 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑧 <s 𝑎)
49 onsno 28196 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ Ons𝑥 No )
5049adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑥 No )
51 simplrl 776 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑧 ∈ Ons)
52 onsno 28196 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ Ons𝑧 No )
5351, 52syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑧 No )
54 simplll 774 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑎 ∈ Ons)
5554, 17syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → 𝑎 No )
56 slttr 27692 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 No 𝑧 No 𝑎 No ) → ((𝑥 <s 𝑧𝑧 <s 𝑎) → 𝑥 <s 𝑎))
5750, 53, 55, 56syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → ((𝑥 <s 𝑧𝑧 <s 𝑎) → 𝑥 <s 𝑎))
5848, 57mpan2d 694 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) ∧ 𝑥 ∈ Ons) → (𝑥 <s 𝑧𝑥 <s 𝑎))
5958ss2rabdv 4035 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → {𝑥 ∈ Ons𝑥 <s 𝑧} ⊆ {𝑥 ∈ Ons𝑥 <s 𝑎})
60 imass2 6062 . . . . . . . . . . . . . . . . . 18 ({𝑥 ∈ Ons𝑥 <s 𝑧} ⊆ {𝑥 ∈ Ons𝑥 <s 𝑎} → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
6159, 60syl 17 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑧}) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
6247, 61eqsstrd 3978 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → ( bday 𝑧) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
6362sseld 3942 . . . . . . . . . . . . . . 15 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → (𝑝 ∈ ( bday 𝑧) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
64 eleq2 2817 . . . . . . . . . . . . . . . . 17 (( bday 𝑧) = 𝑞 → (𝑝 ∈ ( bday 𝑧) ↔ 𝑝𝑞))
6564imbi1d 341 . . . . . . . . . . . . . . . 16 (( bday 𝑧) = 𝑞 → ((𝑝 ∈ ( bday 𝑧) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) ↔ (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
6665bicomd 223 . . . . . . . . . . . . . . 15 (( bday 𝑧) = 𝑞 → ((𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) ↔ (𝑝 ∈ ( bday 𝑧) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
6763, 66syl5ibrcom 247 . . . . . . . . . . . . . 14 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ (𝑧 ∈ Ons𝑧 <s 𝑎)) → (( bday 𝑧) = 𝑞 → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
6867expr 456 . . . . . . . . . . . . 13 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 → (( bday 𝑧) = 𝑞 → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))))
6968impd 410 . . . . . . . . . . . 12 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → ((𝑧 <s 𝑎 ∧ ( bday 𝑧) = 𝑞) → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
7069rexlimdva 3134 . . . . . . . . . . 11 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → (∃𝑧 ∈ Ons (𝑧 <s 𝑎 ∧ ( bday 𝑧) = 𝑞) → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
7133, 70biimtrid 242 . . . . . . . . . 10 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → (𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) → (𝑝𝑞𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))))
7271impcomd 411 . . . . . . . . 9 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ((𝑝𝑞𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
7372alrimivv 1928 . . . . . . . 8 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ∀𝑝𝑞((𝑝𝑞𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
74 imassrn 6031 . . . . . . . . . . 11 ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ran bday
75 bdayrn 27720 . . . . . . . . . . 11 ran bday = On
7674, 75sseqtri 3992 . . . . . . . . . 10 ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ On
77 dford5 7740 . . . . . . . . . 10 (Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ On ∧ Tr ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
7876, 77mpbiran 709 . . . . . . . . 9 (Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ Tr ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
79 dftr2 5211 . . . . . . . . 9 (Tr ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∀𝑝𝑞((𝑝𝑞𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
8078, 79bitri 275 . . . . . . . 8 (Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ↔ ∀𝑝𝑞((𝑝𝑞𝑞 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → 𝑝 ∈ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
8173, 80sylibr 234 . . . . . . 7 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
82 bdayfun 27717 . . . . . . . 8 Fun bday
83 funimaexg 6587 . . . . . . . 8 ((Fun bday ∧ {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ V) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ V)
8482, 20, 83sylancr 587 . . . . . . 7 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ V)
85 elon2 6331 . . . . . . 7 (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ On ↔ (Ord ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∧ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ V))
8681, 84, 85sylanbrc 583 . . . . . 6 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ On)
87 un0 4353 . . . . . . . . 9 ({𝑥 ∈ Ons𝑥 <s 𝑎} ∪ ∅) = {𝑥 ∈ Ons𝑥 <s 𝑎}
8887imaeq2i 6018 . . . . . . . 8 ( bday “ ({𝑥 ∈ Ons𝑥 <s 𝑎} ∪ ∅)) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})
8988eqimssi 4004 . . . . . . 7 ( bday “ ({𝑥 ∈ Ons𝑥 <s 𝑎} ∪ ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})
90 scutbdaybnd 27761 . . . . . . 7 (({𝑥 ∈ Ons𝑥 <s 𝑎} <<s ∅ ∧ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ On ∧ ( bday “ ({𝑥 ∈ Ons𝑥 <s 𝑎} ∪ ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})) → ( bday ‘({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
9189, 90mp3an3 1452 . . . . . 6 (({𝑥 ∈ Ons𝑥 <s 𝑎} <<s ∅ ∧ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ∈ On) → ( bday ‘({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
9227, 86, 91syl2anc 584 . . . . 5 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday ‘({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅)) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
9316, 92eqsstrd 3978 . . . 4 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday 𝑎) ⊆ ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
94 simpr 484 . . . . . . . 8 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → 𝑧 ∈ Ons)
95 simpll 766 . . . . . . . 8 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → 𝑎 ∈ Ons)
96 onslt 28208 . . . . . . . 8 ((𝑧 ∈ Ons𝑎 ∈ Ons) → (𝑧 <s 𝑎 ↔ ( bday 𝑧) ∈ ( bday 𝑎)))
9794, 95, 96syl2anc 584 . . . . . . 7 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 ↔ ( bday 𝑧) ∈ ( bday 𝑎)))
9897biimpd 229 . . . . . 6 (((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) ∧ 𝑧 ∈ Ons) → (𝑧 <s 𝑎 → ( bday 𝑧) ∈ ( bday 𝑎)))
9998ralrimiva 3125 . . . . 5 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ∀𝑧 ∈ Ons (𝑧 <s 𝑎 → ( bday 𝑧) ∈ ( bday 𝑎)))
100 bdaydm 27719 . . . . . . . 8 dom bday = No
10123, 100sseqtrri 3993 . . . . . . 7 {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ dom bday
102 funimass4 6907 . . . . . . 7 ((Fun bday ∧ {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ dom bday ) → (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ( bday 𝑎) ↔ ∀𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) ∈ ( bday 𝑎)))
10382, 101, 102mp2an 692 . . . . . 6 (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ( bday 𝑎) ↔ ∀𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) ∈ ( bday 𝑎))
10431ralrab 3662 . . . . . 6 (∀𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝑎} ( bday 𝑧) ∈ ( bday 𝑎) ↔ ∀𝑧 ∈ Ons (𝑧 <s 𝑎 → ( bday 𝑧) ∈ ( bday 𝑎)))
105103, 104bitri 275 . . . . 5 (( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ( bday 𝑎) ↔ ∀𝑧 ∈ Ons (𝑧 <s 𝑎 → ( bday 𝑧) ∈ ( bday 𝑎)))
10699, 105sylibr 234 . . . 4 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}) ⊆ ( bday 𝑎))
10793, 106eqssd 3961 . . 3 ((𝑎 ∈ Ons ∧ ∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏}))) → ( bday 𝑎) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎}))
108107ex 412 . 2 (𝑎 ∈ Ons → (∀𝑏 ∈ Ons (𝑏 <s 𝑎 → ( bday 𝑏) = ( bday “ {𝑦 ∈ Ons𝑦 <s 𝑏})) → ( bday 𝑎) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝑎})))
1098, 13, 108onsis 28212 1 (𝐴 ∈ Ons → ( bday 𝐴) = ( bday “ {𝑥 ∈ Ons𝑥 <s 𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  cun 3909  wss 3911  c0 4292  𝒫 cpw 4559   class class class wbr 5102  Tr wtr 5209  dom cdm 5631  ran crn 5632  cima 5634  Ord word 6319  Oncon0 6320  Fun wfun 6493   Fn wfn 6494  cfv 6499  (class class class)co 7369   No csur 27584   <s cslt 27585   bday cbday 27586   <<s csslt 27726   |s cscut 27728  Onscons 28192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-1o 8411  df-2o 8412  df-no 27587  df-slt 27588  df-bday 27589  df-sle 27690  df-sslt 27727  df-scut 27729  df-made 27792  df-old 27793  df-new 27794  df-left 27795  df-right 27796  df-ons 28193
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator